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a b s t r a c t

Cross-spectral analysis is commonly used in climate research to identify joint variability between two
variables and to assess the phase (lead/lag) between them. Here we present a Fortran 90 program
(REDFIT-X) that is specially developed to perform cross-spectral analysis of unevenly spaced paleocli-
mate time series. The data properties of climate time series that are necessary to take into account are for
example data spacing (unequal time scales and/or uneven spacing between time points) and the per-
sistence in the data. Lomb–Scargle Fourier transform is used for the cross-spectral analyses between two
time series with unequal and/or uneven time scale and the persistence in the data is taken into account
when estimating the uncertainty associated with cross-spectral estimates. We use a Monte Carlo ap-
proach to estimate the uncertainty associated with coherency and phase. False-alarm level is estimated
from empirical distribution of coherency estimates and confidence intervals for the phase angle are
formed from the empirical distribution of the phase estimates. The method is validated by comparing the
Monte Carlo uncertainty estimates with the traditionally used measures. Examples are given where the
method is applied to paleoceanographic time series.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Cross-spectral analysis is often used to estimate the relation-
ship between two time series as a function of frequency. Of par-
ticular importance are the coherency and phase spectrum. Co-
herency is a dimensionless measure on how well two time series
co-vary at different frequencies while the phase spectrum shows if
the variations happen synchronously at each frequency or if there
is a phase difference between them. Cross-spectral analysis is used
in climate research to identify joint variability between two vari-
ables and to assess the phase (lead/lag) between them.

Paleoclimate proxy time series come from various archives
such as marine sediments, ice caps, lake sediments, speleothems,
tree rings or corals. Usually the sampling is carried out at constant
length intervals and then transferred into the time domain, either
by direct dating, or by aligning with other dated time series. Most
cross-spectral analysis methods require that the two time series
are sampled at identical times and have constant spacing between
time points (evenly spaced). This is rarely the case with paleocli-
mate time series as the archives do normally not accumulate at

constant rate, which makes in many cases some kind of inter-
polation necessary prior to the analysis. Unfortunately, interpola-
tion can bias the spectral results substantially as the spectral
power may be shifted from higher to lower frequencies, that is, the
spectrum becomes redder (Schulz and Stattegger, 1997). The in-
terpolation can be avoided by estimating the spectrum directly
from unevenly spaced time series with the Lomb–Scargle Fourier
transform (Lomb, 1976; Scargle, 1982) as done for example in the
computer programs by Schulz and Stattegger (1997), Schulz and
Mudelsee (2002) and Pardo-Igúzquiza and Rodríguez-Tovar
(2012).

Generally, climate time series include persistence (serial cor-
relation) or memory as there is natural inertia in the climate
system. Due to the persistence, the spectra of climate time series
are characterized by greater amplitude values at lower frequencies
(red noise). To distinguish the signals (spectral peaks) in the
spectrum of climate time series from background variability they
need to be tested against red noise. First-order autoregressive or
AR(1) process can be used to model the climate noise (Hassel-
mann, 1976). The model is normally fitted to the observed time
series and the estimated AR(1) parameter is used to form the red
noise spectrum (Allen and Smith, 1996). In REDFIT (Schulz and
Mudelsee, 2002), the AR(1) parameter is estimated directly from
the unevenly spaced time series, so there is no need to interpolate
the time series, which can bias the estimated value. The estimated
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AR(1) parameter is used to form a theoretical AR(1) spectrum and
false-alarm level for testing the significance of spectral peaks via
the χ2 distribution. In addition Monte Carlo simulations can be
used, where a large number of red noise processes are generated
with the same estimated AR(1) parameter, to form false-alarm
level as percentiles of the Monte Carlo ensemble (Schulz and
Mudelsee, 2002).

The REDFIT program can only be used for univariate spectral
analysis or the autospectrum. Given the need for cross-spectral
analysis for unevenly spaced data where the significance is eval-
uated with Monte Carlo simulations, we present a computer pro-
gram REDFIT-X, in which cross-spectral analysis has been im-
plemented. Until now the computer program SPECTRUM (Schulz
and Stattegger, 1997) has been available for cross-spectral analysis
for unevenly spaced climate time series. However the significance
measurements in SPECTRUM do not allow for the persistence in-
cluded in paleoclimate time series. Therefore it is necessary to
combine the two approaches, to perform both auto- and cross-
spectral analysis with reliable uncertainty estimates.

2. Method

2.1. Cross-spectral analysis – background

2.1.1. Coherency and phase spectrum
The most important features of the cross-spectrum are coher-

ency spectrum and phase between the two signals. Coherency is
defined as:
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where Gxx(f) and Gyy(f) are the autospectra of the signals x(t) and y
(t) (with t being time), respectively and Gxy(f) is the cross-spec-
trum between them (e.g., Bendat and Piersol, 2010). It is a di-
mensionless measure that informs about the degree of linear re-
lationship between two time series, as a function of frequency (f).
Coherency is in the range from 0 (no relationship) to 1 (perfect
relationship) and can be thought of as a squared correlation
coefficient depending on frequency (von Storch and Zwiers, 2003).

Coherency is estimated as:
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where ^ ( )G fxx k and ^ ( )G fyy k are the estimated autospectra and ^ ( )G fxy k
is the estimated cross-spectrum of two weakly stationary time
series { ( ) ( )} =t i x i,x i

n
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data points in each series) (e.g., Bendat and Piersol, 2010). The
frequency fk is in the range from the fundamental frequency
¯ = ( ¯)f nd1/ to the average Nyquist frequency = ( ¯)f d1/ 2Nyq , where n

is the number of data points and ¯ = [ ( ) − ( )] ( − )d t n t n1 / 1 is the
average spacing of the time series (Mudelsee, 2010). Apparently
when two time series do not have the same sampling points, the
average spacing ( ¯ ¯d d,x y) and the fundamental frequency (¯ ¯ )f f,x y for
each time series can differ. To ensure that the time series with the
lower resolution determines these variables, we use
¯ = ( ¯ ¯ )d d dmax ,xy x y , ¯ = (¯ ¯ )f f fmax ,xy x y and the average Nyquist fre-

quency is determined as = ( ¯ )f d1/ 2 xyNyq (Schulz and Stattegger,
1997).

The auto- and cross-spectra are estimated with the Lomb–
Scargle Fourier transform (Lomb, 1976; Scargle, 1982) in combi-
nation with the “Welch's Overlapped Segment Averaging” (WOSA)
procedure (Welch, 1967) as done in Schulz and Stattegger (1997).

The WOSA segmenting is used to smooth the estimated raw
spectrum and make it consistent (the raw spectrum is an incon-
sistent estimator as the variance does not decrease with increasing
data size). The time series of length nx and ny are split into a
number n50 of overlapping segments of length n x

seg and n y
seg (with

50% overlap)
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where = …i n1, , 50. A linear trend is subtracted from each seg-
ment to avoid possible artifacts at low frequencies (i.e., resulting
from periods, which exceed the segment length). Of course, in-
terpretation of the low-frequency part of a spectrum requires
sufficiently long segments. The segments are multiplied by a taper

( ) = …w j j n, 1, , seg (see different types of spectral windows in
Harris, 1978) to reduce spectral leakage and then Fourier trans-
formed
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where LS denotes the Lomb–Scargle Fourier transform (Lomb,
1976; Scargle, 1982). Finally the n50 segments are averaged to form
consistent auto- and cross-spectrum
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where n denotes the complex conjugate (Schulz and Stattegger,
1997).

The coherency estimate is biased, where the coherency be-
tween two uncoupled time series are expected to be greater than
zero (Benignus, 1969). We use the bias approximation from Bendat
and Piersol (2010) to form a bias-corrected coherency estimate
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where neff is the effective number of segments (defined in Section
2.1.2).

The phase spectrum is estimated as
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where ^ ( )Q fxy k and ^ ( )C fxy k are the real and imaginary parts of the

estimated cross-spectrum ^ ( )G fxy k , respectively (e.g., Bendat and
Piersol, 2010). We use the four-quadrant inverse tangent function
in Fortran (atan2), which returns the result in appropriate quad-
rant. Therefore the estimated phase angle falls in the range from
[�180°, 180°], where zero value means that the two time series
are in phase while non zero value means out of phase.
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