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a b s t r a c t

In this paper we defined a relatively complex reservoir engineering optimization problem of maximizing
the net present value of the hydrocarbon production in a water flooding process by controlling the water
injection rates in multiple control periods. We assessed the performance of a number of response surface
surrogate models and their ensembles which are combined by Dempster–Shafer theory and Weighted
Averaged Surrogates as found in contemporary literature works. Most of these ensemble methods are
based on the philosophy that multiple weak learners can be leveraged to obtain one strong learner which
is better than the individual weak ones. Even though these techniques have been shown to work well for
test bench functions, we found them not offering a considerable improvement compared to an in-
dividually used cubic radial basis function surrogate model. Our simulations on two and three dimen-
sional cases, with varying number of optimization variables suggest that cubic radial basis functions-
based surrogate model is reliable, outperforms Kriging surrogates and multivariate adaptive regression
splines, and if it does not outperform, it is rarely outperformed by the ensemble surrogate models.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The inherent uncertain nature of the geological models—due to
the sparseness and scarcity of data over vast physical domains—
require the designer to assume multiple geological realizations to
predict flow. This adds up prohibitive computational costs to al-
ready demanding single-realization models. Moreover, the control
parameters for the fluid injection and production wells in the in-
dustrial scale are often numerous and are subject to operational
constraints and time-dependent uncertainties. This also makes the
computational domain of the optimization problem large and
consequently difficult, if not impossible, to handle for even the
modern computing systems. Surrogate models are an attractive
option in such circumstances. Surveys of implementation of sur-
rogates for optimization purposes in broad engineering applica-
tions can be found in Jin (2005) and Jin (2011). The improvement
of computational efficiency of surrogate-based optimization
compared to the traditional optimization such as genetic algo-
rithm has been shown in Ong et al. (2003).

The surrogate models are however approximations of the ori-
ginal objective functions, therefore they might introduce artificial
optimal solutions which do not exist in the original objective
function (Jin, 2011) and lead to premature convergence. Also the
techniques have shown a strong dependence on the complex dy-
namics of the non-linear interactions in the model, dimension of
the design space, etc. (Zubarev, 2009). Therefore a proper surro-
gate model management strategy is very important (Jin, 2011). The
choice of a particular surrogate model is also problem-dependent
and for a given problem, it is not trivial to decide which surrogate
model would give the best optimization result. It has been shown
that one surrogate model might give good results for a particular
problem while it might perform very poorly when applied to an-
other problem (Viana and Haftka, 2008). One solution to these
shortcomings might be to improve the accuracy of the surrogates
so that they are less prone to over-fitting and have more gen-
eralization capabilities for unseen solution points (Jin et al., 2002).

Another approach can be the use of multiple surrogate models
(Goel et al., 2007) which have been shown to be beneficial from
the optimization point of view. In this line of research, Zhou et al.
(2007) employed multiple surrogates such as regression and in-
terpolating local surrogates to provide a diversity of approxima-
tion models in a multi-surrogates assisted memetic algorithm.
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Gorissen et al. (2009) brought multiple surrogates to adaptive
sampling. The objective is to be able to select the best surrogate
model by adding points iteratively. Glaz et al. (2009) implemented
a weighted-average approach in use of multiple surrogates. In
their application they have found that at relatively little additional
cost compared with optimizing with a single surrogate, multiple
surrogates can be used to locate extrema of the objective function
of their interest that would be overlooked if only a single ap-
proximation method was employed. Zhang et al. (2012) developed
a hybrid surrogate modeling methodology that adaptively com-
bines the favorable characteristics of different surrogate models
including RBF and Kriging. The methodology generates different
surrogate models (component surrogates), and weights aggrega-
tion of the estimated function value based on the local measure of
accuracy of the individual surrogates.

In an attempt to put into test some of the developments that
have shown to work mostly for analytically tractable problems and
test bench functions, we assess the performance of two open
source toolboxes which use ensemble surrogate strategies. These
toolboxes are due to Müller and Piché (2011) that uses Dempster–
Shafer theory to mix surrogate models, and Viana et al. (2013) that
uses the multiple surrogates based on the square root of the pre-
diction sum of squares for surrogate selection. These methods
have not been used in the context of geo-engineering. So we assess
the performance of these developments of uncertainty-laden
models of heterogeneous reservoirs that adds to the complexity of
the models. Also we apply two different optimization strategies to
search for the optimal solution.

2. Model description, uncertainty and optimization problem

2.1. Governing equations

The water injection process into the oil reservoir is considered
herein with assumptions of an immiscible and incompressible
multiphase fluid flow with unit formation volume factor for oil
and water. Gravity and capillary effects are neglected. The problem
is described and sequentially solved by Darcy's law
( λ= − ( )∇v S pKt t w in Ω), mass conservation equation (∇⋅ =v qt )
and the transport equation ( φ + ∇·[ ( )] =∂

∂ v f S qS
t t w w w
w ), where

= +v v vt o w is the total Darcy velocity [m3/day] of the engaging
fluids (oil and water phases denoted by subscripts o and w, re-
spectively), q represents the volumetric total source and sink
contributions [m3/day] of oil and water phases from the wells and
boundary conditions. Also, K [mD] is the tensor of absolute per-
meability, λ λ λ( ) = ( ) + ( )S S St w o w w w is the total mobility and is a
function of water saturation, Sw . The fluid pressure, p [atm], is, in
the absence of capillarity, equal to oil and water phase pressures,
po and pw. Finally Ω is the problem domain.

In the transport equation, φ [–] is the porosity of the porous
medium, ( )f Sw w [–] is the fractional flow function of water defined
by λ λ( ) =f S /w w w t . The phase mobilities ( λo and λw) are herein
modeled by polynomial water and oil relative permeability curves,

( ) = ( − )k S k S1ro wD ro wD
n

, max o and ( ) = ( )k S k Srw wD rw wD
n

, max w and
constant phase viscosities, μo and μw, as λ μ( ) = ( )S k S /w w rw wD w and
λ μ( ) = ( )S k S /o w ro wD o, where = ( − ) ( − − )S S S S S/ 1wD w wc or wc . In
these relations no and nw are exponents of the polynomials con-
trolling curvature of the curves, SwD is the normalized water sa-
turation that varies between zero and one as opposed to the water
saturation that varies between Swc (connate water saturation) and

− S1 or where Sor is the oil residual saturation.
The above equations are solved with the open-source MATLAB

Reservoir Simulation Toolbox (Lie et al., 2012).

2.2. Geological model

2.2.1. Two dimensional model
The two dimensional geological model used in this work is

3000 m�3000 m�1 m long in x, y and z directions representing
a thin horizontal reservoir. The gridblocks are 50 m�50 m�1 in
length, width and height respectively so that the number of
gridblocks is 60�60. The boundaries are assumed fully closed and
the reservoir is fully saturated with oil. The porosity of the model
is a constant value of 0.2. The water and oil viscosities are
1.0�10�3 Pa s and 10.0�10�3 Pa s. The water and oil surface
densities are 1014 and 859 kg m�3. The relative permeabilities of
oil and water are represented by quadratic polynomials
( = =n n 2o w ) and = =k k 1ro rw, max , max and capillary pressure is
ignored and the initial water saturation is set to zero.

The permeability is assumed uncertain but exhibiting, in two
separate cases, the features of either of the following geo-en-
vironmental landscapes: a shale-dominant reservoir with multiple
narrow diagonal intersecting channels with 45° orientation (de-
noted hereafter simply by Model 2D-a) and a sandstone reservoir
crisscrossed with a multitude of lateral shale streaks (Model 2D-b).

In order to generate realizations of different permeability fields,
S-GeMS (the Stanford Geostatistical Modeling Software available
at http://sgems.sourceforge.net) is used. S-GeMS provides algo-
rithms for multiple-point geostatistics. A review of multiple-point
geostatistics is conducted by Hu and Chugunova (2008) and there
are numerous subsurface modeling applications of it in literature
(e.g., Ronayne et al., 2008; Mariethoz et al., 2010; Mariethoz and
Kelly, 2011). One such algorithm is FILTERSIM (Zhang et al., 2006;
Wu et al., 2008) that is used to build the image or numerical model
by conditioning to local data patterns using a prior structural
model given under the form of a visually explicit training image
(Zhang et al., 2006). Reproducing geological shapes based on a
training image by multiple-point geostatistics is more realistic
than the traditional two-point geostatistics that utilizes variogram
models to characterize the spatial structure of data as the vario-
grams often cannot capture curvilinear structures and shapes of
geological bodies such as channels (Journel, 1993; Strebelle, 2000).

The training image here is an image of a diagonally channelized
permeability field (Model 2D-a) or a shale populated sandstone
(Model 2D-b). The training image serves as prior knowledge of the
geology of the reservoir. Figs. 1 and 2 show the six realizations of
the absolute permeability obtained by unconditional continuous
FILTERSIM simulation using S-GeMS for the two cases of perme-
ability considered in this work to introduce uncertainty.

The water injection is performed by four injection wells (I1, I2,
I3 and I4) at the corners of the reservoir and one production well
in the center of the reservoir (P1) as shown in Fig. 1.

2.2.2. Three dimensional model
We use an ensemble version (with 100 realizations) of the Egg

Model (Jansen et al., 2013) for the three dimensional example and
we refer to it as Model 3D. The model has 60�60�7 grid cells of
which 18,553 cells are active leaving an egg-shaped model after
eliminating the inactive cells. The gridblocks are 8 m�8 m�4 m
in length, width and height respectively. The porosity is 0.2. Oil
and water viscosities are 5.0�10�3 Pa s and 1.0�10�3 Pa s. The
water and oil surface densities are 1000 and 900 kg m�3. For the
relative permeabilities of oil and water, = =n n4, 3o w and

= =k k0.8, 0.75ro rw, max , max and = =S S0.2, 0.1wc or . Capillary
pressure is ignored and the initial water saturation is set 0.1.

The permeability fields (Fig. 3a) demonstrate channelization
with strong vertical correlation. There are no aquifer or gas cap in
the model, the primary production is neglected, and the production
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