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a b s t r a c t

Finite element schemes based on discontinuous Galerkin methods possess features amenable to mas-
sively parallel computing accelerated with general purpose graphics processing units (GPUs). However,
the computational performance of such schemes strongly depends on their implementation. In the past,
several implementation strategies have been proposed. They are based exclusively on specialized com-
pute kernels tuned for each operation, or they can leverage BLAS libraries that provide optimized rou-
tines for basic linear algebra operations. In this paper, we present and analyze up-to-date performance
results for different implementations, tested in a unified framework on a single NVIDIA GTX980 GPU. We
show that specialized kernels written with a one-node-per-thread strategy are competitive for poly-
nomial bases up to the fifth and seventh degrees for acoustic and elastic models, respectively. For higher
degrees, a strategy that makes use of the NVIDIA cuBLAS library provides better results, able to reach a
net arithmetic throughput 35.7% of the theoretical peak value.

Published by Elsevier Ltd.

1. Introduction

High-performance compute resources are used intensively in
modern computational seismology for applications including
earthquake simulation and seismic imaging. State-of-the-art
compute clusters consist of massively parallel many-core central
processing units (CPUs) with graphics processing units (GPUs) or
coprocessors to provide a performance boost. Computing on GPUs
has been made accessible to the scientific community thanks to
programming frameworks that expand languages already widely
used (e.g. C, Cþþ or Fortran). However, to fully leverage the
capabilities of GPUs, applications must be developed taking into
account specifics of each architecture. It is therefore critical to
develop computational algorithms that can be efficiently im-
plemented on these architectures.

In computational seismology, several implementations have
been proposed for numerical methods suitable for GPUs copro-
cessors. Examples include tuned implementations for finite-dif-
ference schemes (Michea and Komatitsch, 2010; Weiss and
Shragge, 2013; Abdelkhalek et al., 2012; Rubio et al., 2014) or fi-
nite-element schemes (Heinecke et al., 2014; Komatitsch et al.,
2009, 2010; Mu et al., 2013; Modave et al., 2015). Nowadays, the
finite-difference schemes are the most widely used, and a large

literature is available (see e.g. Virieux et al., 2011 for a review).
However, the stencil based reconstruction used in finite difference
methods is not ideally suited to resolving wave propagation in
realistic physical heterogeneous media typically suffering from
loss of accuracy (Symes and Vdovina, 2009). By contrast, finite-
element methods based on unstructured meshes are better suited
to handle such material interfaces. Several variants have been in-
vestigated, such as spectral finite-element methods (Komatitsch
and Vilotte, 1998; Komatitsch and Tromp, 1999), continuous mass-
lumped finite-element methods (ChinJoeKong et al., 1999; Cohen
et al., 2001) or discontinuous Galerkin (DG) methods (Dumbser
and Käser, 2006; de la Puente et al., 2007; Collis et al., 2010; Eti-
enne et al., 2010; Krebs et al., 2014; Mercerat and Glinsky, 2015). In
contrast to the standard schemes, the mentioned methods do not
require the solution of large sparse linear systems of equations,
and it is possible to use explicit time-stepping schemes. The DG
approach, in particular, provides a framework that is both flexible
for multi-scale modeling and appears to be well suited for GPU
accelerated computing. First, it can easily handle local time-step-
ping strategies (Warburton, 2008; Dumbser and Käser, 2009;
Baldassari et al., 2011; Minisini et al., 2013), and hybrid dis-
cretizations can be deployed by mixing different discretization
orders and several kinds of elements (Kirby et al., 2000; Dumbser
and Käser, 2009; Etienne et al., 2010; Chan et al., 2015). Then, the
weak element-to-element coupling and the dense algebraic op-
erations required per element are suitable for parallel multi-
threading computations with GPUs (Klöckner et al., 2009).
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Discontinuous Galerkin schemes can be implemented in dif-
ferent ways for GPU computing. Klöckner et al. (2009) proposed an
implementation for first-order wave systems discretized using a
nodal DG scheme. This implementation has been successfully
adapted to several physical contexts (Gödel et al., 2010; Gandham
et al., 2015; Modave et al., 2015), and we have recently presented
an application for reverse-time migration with multi-rate time-
stepping and GPU clusters (Modave et al., 2015a). Alternatively,
Fuhry et al. (2014) have proposed an implementation for two-di-
mensional problems with a modal DG scheme. All these im-
plementations partition the computational work into tailored GPU
kernels, which are optimized separately in order to improve per-
formance. A key difference between the approaches of Klöckner
et al. (2009) and Fuhry et al. (2014) is the programming strategy of
kernels: each thread performs computations corresponding to one
node and to one element, respectively. On the other hand, With-
erden et al. (2014, 2015) recently developed an implementation
based on a nodal DG method for applications of fluid dynamics.
This implementation, named PyFR, makes use of external BLAS
libraries that provide linear algebra routines optimized for hard-
ware devices. Such a strategy has been successfully used for CPU
computing (Chevaugeon et al., 2005; Hesthaven and Warburton,
2002; Marchandise et al., 2006; Vos et al., 2010).

In this paper, we investigate and evaluate three strategies to
implement time-domain DG schemes for GPU computing. All
these strategies have been compared for three-dimensional
acoustic and elastic cases with a unique computational framework.
They were programmed in Cþþ using CUDA 7.5 through the ab-
stract framework OCCA (Medina, 2014), and tested on a single
Nvidia GTX980. We have tested one-element-per-thread and one-
node-per-thread strategies, as well as a strategy that makes use of
an external BLAS library. In this work, we have used the general-
ized single precision matrix-multiplication (SGEMM) routine of
NVIDIA's cuBLAS library (NVIDIA Corporation, 2015a). We show
that, similarly to CPU implementations (Vos et al., 2010), the best
GPU implementation depends on the polynomial degree. The one-
node-per-thread tailored kernels provided the best runtime for
small degree, while the implementation with SGEMM is better for
higher degrees.

This paper is organized as follows. In Section 2, we present the
mathematical models for acoustic and elastic wave propagation,
and we describe the nodal discontinuous Galerkin method and the
time-stepping scheme. In Section 3, key aspects of GPU hardware
and GPU programming are summarized, and all the implementa-
tions are described. Section 4 is dedicated to performance results
and comparisons. We discuss the optimization of the SGEMM
routine for the DG operations, and we analyze its performance
using the roofline model. The implementations are then com-
pared, and all the kernels are systematically profiled.

2. Discontinuous Galerkin schemes

We consider acoustic and isotropic elastic wave models dis-
cretized with a nodal discontinuous Galerkin method in space and
on a third-order Adam–Bashforth method in time. We assume the
physical coefficients to be constant over each mesh cell and dis-
continuous at interfaces. The variational forms of the models and
the schemes are presented in Sections 2.1 and 2.2, respectively.

2.1. Physical models and variational forms

Acoustic waves are governed by the pressure-velocity system,
which reads
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with the pressure ( )p tx, , the velocity ( )tv x, , the density ρ ( )x and
the phase velocity ( )c x . For each mesh cell Dk, we consider the
variational form
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where ψ ( )x is a test function, ( )p xp and ( )p xv are penalty terms.
The penalty terms corresponding to upwind fluxes provided by a
one-dimensional Riemann solver are given by (see e.g. Hesthaven
and Warburton, 2007; Modave et al., 2015a)
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with α ρ= [[ ]] − ( ) [[ ]]+p c vc n , ρ= { }k c1/c and the semi-jumps de-
fined as [[ ]] = ( − )+ −p p p /2 and [[ ]] = ( − )·+ −v v v n/2n . The brackets
{·} denotes the mean value at the interface.

For isotropic media, elastic waves can be simulated with the
velocity-stress system, which reads
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with the stress tensor σ ( )tx, and the Lamé parameters λ ( )x and
μ ( )x . This system supports pressure waves and shear waves, which
the phase velocities are
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respectively. We consider the variational form
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where the upwind fluxes provided by an exact Riemann solver are
given by Wilcox et al. (2010)
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2.2. Numerical schemes

The approximate fields are built on a spatial mesh of the
computational domain Ω ⊂ 3, made of K non-overlapping tetra-
hedral cells, Ω = ⋃k Dk, where Dk is the kth cell. For the nodal
discontinuous Galerkin method, all the scalar fields and the Car-
tesian components of vector and tensor fields are approximated by
piecewise polynomial functions. The discrete unknowns corre-
spond to the values of fields at nodes distributed over the surface
and interior of an element (Hesthaven and Warburton, 2002,
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