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a b s t r a c t

Pixel-based simulation algorithms are the most widely used geostatistical technique for characterizing
the spatial distribution of natural resources. However, sequential simulation does not scale well for
stochastic simulation on very large grids, which are now commonly found in many petroleum, mining,
and environmental studies. With the availability of multiple-processor computers, there is an opportu-
nity to develop parallelization schemes for these algorithms to increase their performance and efficiency.
Here we present a conflict-free, path-level parallelization strategy for sequential simulation. The method
consists of partitioning the simulation grid into a set of groups of nodes and delegating all available
processors for simulation of multiple groups of nodes concurrently. An automated classification proce-
dure determines which groups are simulated in parallel according to their spatial arrangement in the
simulation grid. The major advantage of this approach is that it does not require conflict resolution
operations, and thus allows exact reproduction of results. Besides offering a large performance gain when
compared to the traditional serial implementation, the method provides efficient use of computational
resources and is generic enough to be adapted to several sequential algorithms.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical modeling of natural phenomena is commonly per-
formed with geostatistical techniques owing to their conditioning
capabilities and relatively fast processing time when compared to
process-based and surface-based methods. These techniques rely
on spatial correlation of available data for statistical inference of
parameters required to derive the uncertainty distribution at un-
informed grid nodes.

In the last few years, the size of the simulation grids used to
represent geological models in petroleum, mining, and environ-
mental applications has increased by orders of magnitude. Al-
though efficient pixel-based geostatistical simulation algorithms
have been developed, the computational costs remain high for
very large grids. With the availability of multiple-processor com-
puters and multicore central processing units (CPUs), as well as
graphics processing units (GPUs) for general purpose computing,
development of parallel schemes for traditional sequential simu-
lation algorithms is essential for full utilization of these resources,
which can reduce the execution time and optimize memory con-
sumption. Moreover, such a strategy can contribute to further in-
creases in the resolution and overall size of these simulation grids.

Parallel computing is a common strategy for reducing proces-
sing time and increasing the resolution capacity (scalability) of
algorithms. Despite their benefit in terms of performance, some of
the parallel versions of sequential algorithms require conflict
management systems. This is especially true when one is con-
sidering parallelization of a simulation at the path level. Conflicts
occur when nodes being simulated in parallel have overlapping
neighborhoods. In order to preserve the statistical quality of the
results, a system must manage these conflicts through resimula-
tion, waiting, or postponing operations. The biggest issue related
to this approach is that it does not allow the exact reproduction of
results, making it unsuitable to several applications.

Here we present a general framework consisting of a straight-
forward conflict-free parallelization method that can be applied to
any sequential simulation algorithm using shared or distributed
memory architectures. The proposed strategy is a path-level par-
allelization approach mainly inspired by previous work by Vargas
et al. (2007). Our method avoids the requirement for a conflict
resolution system, allowing the reproduction of results, but also
minimizing the amount of communication between processors
and waiting operations.

The methodology is illustrated by practical implementation of a
parallel version of the sequential Gaussian simulation (SGS) algo-
rithm as a plugin in the SGeMS software (Remy et al., 2009). The
results are compared with classical serial SGS implementation.
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2. Parallelization strategies for sequential simulation

Sequential simulation comprises a broad class of simulation
methods widely used in geostatistics to generate realizations of
random fields (Goovaerts, 1997; Deutsch and Journel, 1998; Chiles
and Delfiner, 1999; Caers, 2005; Remy et al., 2009). This large
group of methods includes traditional techniques based on two-
point statistics, such as SGS (Isaaks, 1990; Journel, 1994), sequen-
tial indicator simulation (SIS) (Isaaks, 1984; Journel and Alabert,
1989), direct sequential simulation (DSS) (Soares, 2001), and their
co-simulation variants (Goovaerts, 1997; Chiles and Delfiner,
1999). The majority of these techniques use a variogram as the
main tool for characterizing spatial continuity. Multiple-point
statistics (MPS) algorithms such as SNESIM (Strebelle, 2002), Di-
rect Sampling (Mariethoz et al., 2010), and IMPALA (Straubhaar
et al., 2011) rely on training images for statistical inference of
spatial patterns.

Despite their specific features, all sequential simulation meth-
ods follow the same formalism to generate a set of realizations.
These techniques are based on decomposition of the multivariate
probability density function (pdf) of a stationary and ergodic
random function to the product of univariate posterior distribution
functions (Scheuer and Stoller, 1962; Rubinstein, 1981; Johnson,
1987; Ripley, 1987). The decomposition process allows modeling
and sampling of a one-point conditional cumulative distribution
function (ccdf) at each node of the simulation grid. To ensure that
the spatial structure of the phenomena is reproduced, each local
ccdf is made conditional not only on the available hard data but
also on previously simulated nodes. These conditional distribu-
tions are determined by a spatial model that describes the spatial
patterns of the random field. The spatial model can be a single
variogram or a set of variograms in the case of SGS and SIS, re-
spectively, or a training image and its corresponding search tree in
MPS methods. In general, grid nodes are visited along a random
path, but alternative simulation sequences (e.g., raster paths) can
also be adopted.

All the aforementioned simulation methods share a common
peculiarity: they are all based on serial simulation of a single node
at a time. This strategy offers excellent conditioning capabilities,
but it is also extremely inefficient for simulation on large grids.
Exceptions to this node-by-node framework are the FILTERSIM
(Zhang et al., 2006), SIMPAT (Arpat and Caers, 2007), DISPAT
(Honarkhah and Caers, 2010), CCSIM/MS-CCSIM (Tahmasebi et al.,
2012, 2014a) and CIQ (Mahmud et al., 2014) algorithms. These
algorithms are patch-based simulation methods. Instead of simu-
lating a single node at a time, these techniques simulate groups of
nodes depicting entire geometric patterns extracted from a train-
ing image. These methods provide a significant improvement in
performance, but they suffer from conditioning problems and may
generate models with reduced spatial uncertainty (i.e., less varia-
bility among realizations).

Mariethoz (2010) discussed different parallelization approaches
for sequential simulation in detail. The author classified paralleli-
zation strategies at three distinct levels: realization, path, and
node levels.

Parallelization at realization level involves computation of each
realization by a different processor. The major advantage in par-
allelizing at this level is that no communication between pro-
cessors is required. However, this is an inappropriate solution
when performing sensitivity analyses of results for specific para-
meters in cases with large simulation grids.

The second approach consists of parallelizing at the path level.
In this case, the simulation grid can be subdivided into zones
composed of groups of nodes, and different processors are as-
signed to compute the calculations for each zone (Vargas et al.,
2007). A limiting factor is that this strategy is only practical

in situations in which the size of the simulation grid is significantly
greater than the dimensions of the search neighborhood. For-
tunately, this is usually the case for numerical models of petro-
leum reservoirs and most metal deposits. Mariethoz (2010) pro-
posed a master–slave parallelization architecture that distributes
the grid nodes among several processors. A master processor is
responsible for managing the path, search neighborhoods, and
conflicts, while the slave processors carry out the simulation itself.
More recently, Tahmasebi et al. (2012) presented a path-level
parallelization methodology also based on a master–slave archi-
tecture, but using a processor as the master and several processors
in GPUs as slaves. Furthermore, specific GPU-based parallel com-
puting schemes for SNESIM and Direct Sampling algorithms were
presented by Huang et al. (2013b) and Huang et al. (2013a),
respectively.

The main drawback of the master–slave architecture is that it
generates conflicts when a node to be simulated has other nodes
within its neighborhood being simulated by other processors.
Remediation of conflicts commonly requires resimulation proce-
dures, alterations in the simulation path, waiting operations, or
postponing strategies (Mariethoz, 2010; Tahmasebi et al., 2012). In
distributed memory machines, these actions increase the number
of messages between processors, which consequently slows down
the simulation process. Moreover, a major disadvantage of conflict
resolution procedures is that they do not allow reproducible re-
sults, even in systems with exactly the same hardware config-
urations. The third option consists of parallelizing at the node le-
vel. In this approach, computation of each grid node is parallelized
(Nunes and Almeida, 2010; Peredo and Ortiz, 2011; Straubhaar
et al., 2011; Huang et al., 2013b).

In the following section, the proposed method is presented. The
methodology consists of a path-level parallelization scheme for
sequential simulation that avoids the use of conflict resolution
procedures. The algorithm is an evolution of the methodology
presented by Vargas et al. (2007), but instead of adapting a single
random path for simulation of each subzone of the grid, the al-
gorithm generates multiple paths for each zone from a single
global seed. In addition, the concept of parallel sections introduced
by Vargas et al. (2007) is generalized and replaced by defining
parallel grid partitions (PGPs) and simulation stages to manage
parallel simulations of the grid partitions.

3. Proposed method

Consider a grid GN composed of N nodes discretizing a sta-
tionary random field Z i Nu u R( ), , 1, ,i i

n∈ = … , also denoted as Zi,
and a set of conditioning data z nd u{ ( ), 1, , }n α= = …α . In addi-
tion, consider the data set Λi, which can contain both hard data

Fig. 1. PGPs simulation stages.
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