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a b s t r a c t

To gain insight into complex processes in hydrothermal deposit-forming systems, we mapped the

Zhabotinskii model onto a two-dimensional reaction-diffusion CNN (cellular neural/nonlinear network)

of two state variables and two diffusion coefficients. The edge of chaos domain of the Zhabotinskii CNN

was numerically determined according to a theory of complexity. The simulation of dynamic systems,

with parameters taken from the edge of chaos domain as described in this study, can generate some

interesting distribution patterns of component concentrations that plausibly characterize certain

complex phenomena involved in hydrothermal mineralization.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Based on observations of rocks, minerals, and the distribution
of elements in minerals, one can deduce plausible processes of
deposit formation in certain types of mineralization. One often
sees periodic oscillations and zonations in mineral deposit sam-
ples, and those patterns consist of either different minerals or
different contents of minerals. Some oscillations may be due to
changes in temperature and pressure changes in mineralization
systems, and these types of changes are often directional or
symmetrical. For example, cores of mineralized systems often
show high-temperature minerals or elements, but gradually
toward the edge of such systems more low-temperature mineral
or element associations occur. Another example is that veins
hosted in fractures of rocks may show low-temperature minerals
or elements along their edges close to the country rocks, but high-
temperature components inward the veins. There are also other
types of periodic oscillations, such as in twins of feldspars that
show periodic oscillations without a dominant trend of intensity.
These types of localized dissipative formations, which widely
exist in various nonlinear dynamic systems, share a common
principal characteristic of dynamic arrays, such as cellular nonlinear

networks. This common principal character is defined by the
presence of interconnections of a sufficiently large number of
simple dynamic units, which can be explained using a cellular
neural/nonlinear network (CNN) dynamic simulation. CNN involves
spatial arrangement of locally coupled cells, where each cell is a
dynamical system that has input, output, and state variables
according to certain prescribed dynamical laws (Chua, 1997).
Dynamical systems of interconnection of several simple dynamic
units often exhibit extremely complex, synergistic, and self-orga-
nizing behaviors. Reaction-diffusion CNNs have been used to
simulate phenomena about complexity in nonlinear chemistry,
physics, and other fields (Chua, 1997; Dogaru and Chua, 1998a, b,
c; Min et al., 2000). Another common characteristic of dissipative
formations, which involve active wave propagation phenomena, is
the presence of an active medium that is powered by a constant
supply of external energy. In a hydrothermal deposit-forming
system, for example, the local components act as active media
(far from the thermal dynamic equilibrium regions), which is
powered by the entrance of hydrothermal fluids.

Some progress has been made to understand the emergence
and complexity of hydrothermal deposit-forming processes
(Yu, 1999a, b, c, 2000a, b; Xu et al., 2003, 2010). In this paper,
we described a method to determine the edge of chaos domain in
order to simulate some significant phenomena involved in hydro-
thermal deposit-forming systems by using the reaction-diffusion
Zhabotinskii CNN. In this method, we transformed a reaction-
diffusion CNN from partial differential equations (PDEs) by dis-
cretizing the spatial coordinates of the state variables.
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2. Conceptual PDE and CNN for hydrothermal deposit-
forming processes

In hydrothermal deposit-forming systems, reaction and diffu-
sion processes play important roles that can be modeled using
PDEs:
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, i¼ 1,2,. . .,n: ð1Þ

here (x,y,z)AODR3, and C¼ ðC1,C2,. . .,CnÞ
t is the vector of con-

centrations of a system’s chemical components that are treated as
state variables of the system. The nonlinear functions fðCÞ ¼ ðf1ðCÞ,
f2ðCÞ,. . .,fnðCÞÞ

t represent either the kinetic term or the reaction
term of a dynamic system. The second term on the right side of
Eq. (1) represents the diffusion term with D1,D2,. . .,Dn as diffusion
coefficients. D¼ diagðD1,D2,. . .,DnÞ is a diagonal matrix composed
of diffusion coefficients. Under given pressure and at an appro-
priate temperature, the kinetic term is mainly associated with the
rates of chemical reactions and the diffusion term is mainly
determined by the porosity and penetrability of the system media.

According to Dogaru and Chua (1998a), we can formulize
a CNN using a regular grid coordinate system that partitions a
deposit-forming region O into Nk�Nl�Nm regular units with a
constant spatial interval. According to the new coordinate system,
we can represent Eq. (1) in a discrete form in which the Laplacian
term has been replaced by its central differences along the x,
y, and z directions, respectively. This result gives a group of
n�Nk�Nl�Nm first-order ordinary differential equations that
form the reaction-diffusion CNN.

_C iðk,l,mÞ ¼ fiðC1ðk,l,mÞ, C2ðk,l,mÞ,. . ., Cnðk,l,mÞÞþ Ii, i¼ 1,2, � � � ,n,

ð2Þ

where

Ii ¼Di½Ciðk�1,l,mÞþCiðkþ1,l,mÞþCiðk,l�1,mÞþCiðk,lþ1,mÞ

þCiðk,l,m�1ÞþCiðk,l,mþ1Þ�6Ciðk,l,mÞ�,

k¼ 1,2,. . .,Nk; l¼ 1,2,. . .,Nl; m¼ 1,2,. . .,Nm: ð3Þ

The above CNN is three-dimensional. Similarly, we can obtain
a two-dimensional reaction-diffusion CNN. However, the process
of a real deposit-forming system is very intricate. Nevertheless,
hydrothermal mineral deposits are thought to form mainly in self-
catalyzed redox reactions. For convenience without loss of generality,
a two-component model proposed by Zhabotinskii (1974) is applied
here to simulate some phenomena in hydrothermal deposit-forming
processes. The following Zhabotinskii model (in the unstirred special
case) is reduced from the three-component Oregonator model (Field
and Burger, 1985).
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where

f1ðC1,C2Þ ¼ C1f1�C2½2þðC1�1Þ2�gþa,

f2ðC1,C2Þ ¼�bC2�C1ðC2�1Þ: ð5Þ

This model involves two chemical components (C1 and C2),
two system parameters (a and b), and two diffusion coefficients
(D1 and D2). This model can represent the simple conditions
involved in hydrothermal deposit-forming or mineralization sys-
tems. The system parameters a and b may be used to represent
with temperature, pressure, and other factors, like velocity of
reaction, which are dimensionless integrative variables. D1 and D2

are diffusion coefficients of the two chemical components. The
reaction terms f1 and f2 involve a third-order nonlinear relationship

between the components C1 and C2, implying that a change in the
concentration of one component is related to a change in the
concentration of the other component. An example of this would
be a hydrothermal zinc deposit-forming system containing two
main chemical components of Ca and Zn in a hydrothermal solution.
As the mineral sphalerite (ZnS) crystallizes, the remaining solution
will have reduced concentrations of Zn and increased concentrations
of Ca. When the concentration of the latter reaches a critical level,
calcite (CaCO3) starts to form and causes the system to change
toward the Zn-rich direction. The complex relationship of the two
components described or modeled in Eq. (5) is explained in Field
and Burger (1985).

To determine the variation region of a and b in Eq. (5) so that a
hydrothermal deposit-forming system may exhibit complexity
is one of the two main tasks of the research. The other task is to
simulate some significant phenomena in hydrothermal deposit-
forming processes by the following CNN. Discretization of the
model gives the following form

dC1ði,jÞ

dt
¼ f1ðC1ði,jÞ,C2ði,jÞÞþ I1

dC2ði,jÞ

dt
¼ f2ðC1ði,jÞ,C2ði,jÞÞþ I2, ð6Þ

where

Ik ¼DkðCkði�1,jÞþCkðiþ1,jÞþCkði,j�1ÞþCkði,jþ1Þ�4Ckði,jÞÞ: ð7Þ

Eqs. (5)–(7) together form the CNN that is applied in this study as
described in the following sections. Because this CNN is formed from
the PDEs suggested by Zhabotinskii (1974) to describe the Belousov–
Zhabotinskii reaction, we refer to it as the Zhabotinskii CNN.

3. Determining the edge of chaos domain of the
Zhabotinskii CNN

As Dogaru and Chua (1998a) pointed out, whether a homo-
geneous medium is capable or incapable of exhibiting complexity
depends on whether the CNN cell, or its couplings, is locally active
in a precise mathematical sense. However, it is usually difficult to
select suitable system parameters in the phase space so that a
system acts as we expect it to for the emergence of dissipative
formation. The best way to select suitable parameters is to find the
edge of chaos and the local active domains of the CNN cells, from
which suitable system parameters can be chosen roughly to
enable the system to exhibit complexity. The following three steps
are needed to determine the edge of chaos domain.

(1) Determine the equilibrium domain. To calculate the equili-
brium points of Eq. (6) in the case of no diffusion, I1¼ I2¼0,
for simplicity but without loss of generality, the spatial
coefficients (i,j) are dropped from the notation in the follow-
ing equations.

_C 1 ¼ f1ðC1,C2Þ

_C 2 ¼ f2ðC1,C2Þ: ð8Þ

If we assume that the system is at equilibrium (so that
f1(C1,C2)¼0, f2(C1,C2)¼0), we get

C1f1�C2½2þðC1�1Þ2�gþa¼ 0,

�bC2�C1ðC2�1Þ ¼ 0: ð9Þ

Through calculation using Matlab software, two equilibrium
points of the Zhabotinskii CNN cells for each pair of a and b

can be found. These points are functions of a and b, which
are denoted by (C1(Q1), C2(Q1)) and (C1(Q2), C2(Q2)) in the
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