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a b s t r a c t

In the present study, we applied a novel mesh-free method to solve acoustic wave equation. Although the
conventional finite difference methods determine the coefficients of its operator based on the regular
grid alignment, the mesh-free method is not restricted to regular arrangements of calculation points. We
derive the mesh-free approach using the multivariable Taylor expansion. The methodology can use ar-
bitrary-order accuracy scheme in space by expanding the influence domain which controls the number
of neighboring calculation points. The unique point of the method is that the approach calculates the
approximation of derivatives using the differences of spatial variables without parameters as e.g.
the weighting functions, basis functions. Dispersion analysis using a plane wave reveals that the choice of
the higher-order scheme improves the dispersion property of the method although the scheme for the
irregular distribution of the calculation points is more dispersive than that of the regular alignment. In
numerical experiments, a model of irregular distribution of the calculation points reproduces acoustic
wave propagation in a homogeneous medium same as that of a regular lattice. In an inhomogeneous
model which includes low velocity anomalies, partially fine arrangement improves the effectiveness of
computational cost without suffering from accuracy reduction. Our result indicates that the method
would provide accurate and efficient solutions for acoustic wave propagation using adaptive distribution
of the calculation points.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Forward modeling techniques of wave propagation are indis-
pensable tools for the implementation of reverse time migration
(RTM) and full waveform inversion (FWI) (Tarantola, 1984; Virieux
et al., 2011). Recently, more complex models like salt dome model
(e.g. BP model), which include large velocity contrasts, become a
target of FWI (Cha and Shin, 2010). Since the most computationally
expensive part of these numerical schemes is the forward mod-
eling, the computational efficiency is recognized as one of the keys
to improve the effectiveness of the schemes. For the calculation of
full-waveform synthetic seismic traces in inhomogeneous models,
numerical simulation methods such as finite difference (FD) and
finite element (FE) have often been used. FD method has been
widely used for many years as a simulator of acoustic wave pro-
pagation, and highly accurate and efficient FD operators developed
by many researchers (e.g. Virieux, 1986; Chu and Stoffa, 2012; Liu
et al., in press, 2014; Tan and Huang, 2014) are available. These
schemes are compared to each other in terms of the numerical

accuracy and computational efficiency (e.g. Liang et al., in press). In
many cases, the coefficients of FD operators are derived based on
the regular lattice grids. To overcome problems that may arise to
handle arbitrary shaped anomalies or topographies using the
regular lattice grids, curvilinear schemes for modeling wave pro-
pagation have been developed (e.g. Tarrass et al., 2011). Although
these schemes can handle arbitrary shaped topography, arrange-
ment of optimal grid for complex velocity models is not straight-
forward. On the other hand, FE method uses numerical meshes to
build arbitrary shaped models. The method provides the flexibility
and the accuracy in the calculation through the mesh generation
process, which is computationally costly. It is meaningful to have
other methods that could deal with non-flat surface or interfaces
with less computational load than FE method.

Some novel approaches based on a mesh-free concept have
also been developed. This class of numerical methods can dis-
cretize models of analysis, which include complex topography
and/or complex velocity structure, without any mesh structure or
regular lattice grids, and use a set of calculation points surround-
ing each target point for the discretization (e.g. Lee et al., 2003).
Wittke and Tezkan (2014) presented a new approach for magne-
totelluric modeling using the Meshless Local Petrov–Galerkin
method. Wenterodt and Estorff (2009) investigated the dispersion
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property of the meshfree radial point interpolation method (RPIM)
for the Helmholtz equation, and showed a significant reduction of
the dispersion error compared with the FE method. The method,
however, requires background meshes to conduct the numerical
integration. Furthermore, we need to define not only the radius of
the influence domain but also the weighting and basis functions.
These miscellaneous parameters lead to the complexity in the
choice of optimal combination for minimizing the dispersion error
(Wenterodt and Estorff, 2011).

O’Brien and Bean (2011) developed an irregular lattice method
for elastic wave propagation based on an elastic lattice method
(Monette and Anderson, 1994; Toomey and Bean, 2000; O’Brien
and Bean, 2004). They overcame the restrictions on the regular
lattice through the augmentation in the number of the nearest
neighbor points. Takekawa et al. (2012) proposed a particle
method to simulate seismic wave propagation induced by earth-
quakes. The method can introduce free-surface condition just by
removing or ignoring any particles above the surfaces, and could
be applied to computational rock physics problems (Takekawa
et al., 2014a). These methods do not require the background me-
shes for the numerical integration, and could be classified as true
mesh-free methods. However, the methods do not improve the
order of the accuracy in space even if the number of neighbors is
increased (Takekawa et al., 2014b, 2014c). For the utilization of
mesh-free models in the forward simulation, the accuracy of
methods to apply to the models needs to be revisited.

In this study, we present a mesh-free method for solving
acoustic wave propagation that could provide the accuracy of ar-
bitrary order based on the multivariable Taylor expansion (Tamai
et al., 2013). The method was originally developed for solving in-
compressible fluid flow with the free surface, and provided
arbitrary-order accuracy in space (Tamai et al., 2013). The high-
order scheme could be applied to irregular distributions of parti-
cles successfully without any background meshes, i.e. it is also a
true mesh-free method. Since the method was originally designed
as a general method for solving partial differential equations, we
are able to extend the method to solve the acoustic wave equation.
The feature of the method is that the approximation of derivatives
is calculated by using the differences of spatial variables without
parameters as e.g. the weighting functions, basis functions. In
other words, the method is a mesh-free FD method. This feature of
the method eliminates the complicated process of parameter op-
timization (Wenterodt and Estorff, 2011).

In the present study, we first introduce the basic concept of the
method followed by the verification of the dispersion property for
both regular and irregular arrangements of calculation points. We
then calculate acoustic wave propagation using a homogeneous
model with random distribution of calculation points. Finally, we
demonstrate the effectiveness of the method using an in-
homogeneous model and confirm that our method would be a
true mesh-free method where the accuracy can be quantitatively
measured.

2. Method

In this section, we explain the basic concept of the mesh-free
method based on the multivariable Taylor expansion. The multi-
variable Taylor expansion of a scalar function f r( ) to Mth order at
position ri is expressed as follows:
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where ri and r ri + Δ are the position vectors of calculation point
i and its neighboring point j, d is the number of spatial dimension.
In many cases related to wave propagation, d may be 2 or 3. rΔ is
the relative position vector between points i and j. rdΔ means dth
component of vector rΔ (in two-dimensional case, r r r( , )1 2Δ Δ Δ= )..
We replace f r( )i and f r r( )i Δ+ into f f r( ( ))i i= and

( )f f fr r r( ) ( )j j i Δ= = + , respectively.
Here, we define vectors P and δ as follows:
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Vectors P and δ include coefficients and derivatives, respectively.
Using Eqs. (2) and (3), we transform Eq. (1) as follows:
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where f f fij j iΔ = − . Multiplying both sides of Eq. (4) by P, we
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( )
( )

f f

f f

P P P P r

P P P P r

{( )( )} O

( ) ( ) O (5)

ij
M

ij
M

r r

r r

1

1

i

i

δ

δ

⋅ = Δ + ⋅ ∥Δ ∥

⇒ ⊗ ⋅ = Δ + ⋅ ∥Δ ∥

=
+

=
+

where a b⊗ means the tensor product of vectors a and b.
Here, we introduce an influence domain which supports a finite

region around r ri= . This domain controls the number of neigh-
boring calculation points. Wider range of the influence domain
contains larger number of calculation points. The effect of the in-
fluence domain on the accuracy and calculation time is in-
vestigated in the following section. We calculate the sum of both
sides of Eq. (5) inside the influence domain.
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n is the number of neighboring calculation points inside the in-
fluence domain. Vector (δf) in Eq. (7) includes derivatives of f r( ) at
r ri= . The size of the matrix P P⊗ depends only on the order of
accuracy M. For example, in two-dimensional case, the size are
5 5× and 14 14× for M¼2 and 4, respectively. Since the value of
each component of the matrix depends only on the relative
positions between point i and neighboring points j, the inverse
of the matrix can be calculated before starting time steps. Once the
inverse at each calculation point is fixed, we continue to use it
during the calculation. This means that solving inverse matrices,
which is a challenging procedure, can be excluded from the time
loop.
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