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a b s t r a c t

Heavy computation limits the use of Kriging interpolation methods in many real-time applications,
especially with the ever-increasing problem size. Many researchers have realized that parallel processing
techniques are critical to fully exploit computational resources and feasibly solve computation-intensive
problems like Kriging. Much research has addressed the parallelization of traditional approach to Kriging,
but this computation-intensive procedure may not be suitable for high-resolution interpolation of spatial
data. On the basis of a more effective serial approach, we propose an improved coarse-grained parallel
algorithm to accelerate ordinary Kriging interpolation. In particular, the interpolation task of each un-
observed point is considered as a basic parallel unit. To reduce time complexity and memory con-
sumption, the large right hand side matrix in the Kriging linear system is transformed and fixed at only
two columns and therefore no longer directly relevant to the number of unobserved points. The MPI
(Message Passing Interface) model is employed to implement our parallel programs in a homogeneous
distributed memory system. Experimentally, the improved parallel algorithm performs better than the
traditional one in spatial interpolation of annual average precipitation in Victoria, Australia. For example,
when the number of processors is 24, the improved algorithm keeps speed-up at 20.8 while the speed-
up of the traditional algorithm only reaches 9.3. Likewise, the weak scaling efficiency of the improved
algorithm is nearly 90% while that of the traditional algorithm almost drops to 40% with 16 processors.
Experimental results also demonstrate that the performance of the improved algorithm is enhanced by
increasing the problem size.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In many situations, data collection is time-consuming and ex-
pensive so that only sparse and uneven sample points are avail-
able. Thus, these sample data cannot meet the rigorous demands
of practical applications. Hence, spatial interpolation is one of the
most frequently-used solutions for the generation of a continuous
surface from a number of discrete observed points. Given its the-
oretical advantage and high prediction accuracy, Kriging inter-
polation originating from geostatistics has been widely applied to
spatial prediction and decision making in environmental science
(Goovaerts, 2000; Hengl et al., 2004; Holdaway, 1996; Sampson
et al., 2013; Venkatram, 1988). However, due to its high compu-
tational complexity, the attractive aspects of Kriging are often
overshadowed by the slow speed of the computation (Morrison,
2000).

Several fast calculation methods have been integrated into the
classical computational procedure to improve the efficiency of
Kriging interpolation. The existing methods, such as Gaussian
Markov random field, fast matrix–vector products, and Fast Four-
ier Transformation(FFT), accelerate computation and relieve
memory pressure (Fritz et al., 2009; Hartman and Hössjer, 2008;
Memarsadeghi et al., 2008; Nowak and Litvinenko, 2013). More-
over, Kriging concerned with full rank covariance matrix inversion
makes heavy computation demand when applied to large spatial
datasets. Therefore, low-rank covariance approximations have
been investigated, which dramatically reduce the computational
complexity of Kriging (Cressie and Johannesson, 2008; Furrer
et al., 2006; Katzfuss and Cressie, 2011; Kaufman et al., 2008;
Zhang and Du, 2008). However, these methods focus on the im-
provement of serial Kriging algorithms not parallel Kriging algo-
rithms, resulting in the underuse of computational resources.

With the rapid development of multi-core CPU and GPU
hardware architecture, parallel computing technology has made
remarkable progress. Starting in the 1990s many researchers have
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devoted themselves to the parallelization of various interpolation
algorithms (Armstrong and Marciano, 1996, 1997; Guan and Wu,
2010; Huang et al., 2011; Wang and Armstrong, 2003). Specially,
many Kriging parallel programs were implemented on high per-
formance and distributed architectures (Cheng et al., 2010; Gajraj
et al., 1997; Gebhardt, 2003; Guan et al., 2011; Kerry and Hawick,
1998; Morrison, 2000). Pesquer et al. (2011) leveraged MPI li-
braries to exploit a parallel ordinary Kriging interpolation algo-
rithm incorporating automatic variogram fitting. They employed a
dynamic load-balancing technique to allocate interpolation tasks
so that the parallel Kriging solution is not specific to a particular
environment or architecture. Nevertheless, dynamic distribution
may incur additional overhead as relocation of tasks takes place,
especially in the case of one task packet of a few unobserved
points. The memory resources in the parallel environment directly
restrict task packet size, and further impair the performance of the
parallel algorithm. Similarly, GPU memory may be insufficient to
store the right hand side (RHS) matrix of the Kriging linear
equations in the implementation by Cheng (2013), since many
small data transfers were batched into a single large data transfer
from host to device for reducing the frequent memory transfers
overhead at the cost of additional storage space. The high memory
consumption of these previous parallel algorithms based on the
traditional approach mainly results from the store of a large linear
system while processing large datasets (Shi and Ye, 2013). An
improved approach proposed by Davis and Grivet (1984) made an
algebraic reformulation to relate the scale of the Kriging linear
system to the size of observed dataset only, thus reducing memory
consumption. Moreover, the time-consuming matrix multi-
plications in the traditional approach are avoided because the
Kriging estimator is computed in the form of scalar products.
However, there is no previously existing parallel version of this
approach, we address with an MPI-based parallelization in a dis-
tributed memory system to fill this gap in the research.

Comparatively, two MPI-based Kriging algorithms are designed
based on the traditional and improved approaches, focusing on
parallelizing the most computation-intensive parts for solving the
linear system and estimating each unknown point. All the points
to be estimated are split into a few blocks, and packaged and as-
signed to each processor at once. The data interpolation of each
unknown point can be regarded as an embarrassingly parallel
problem that is obviously decomposable into many identical and
separate subtasks (Pacheco, 2011).

Through a series of comparisons, our novel parallel algorithm
achieves better performance in both execution efficiency and
memory consumption. In addition, our experiment statistically
demonstrates the relationship between the efficiency of the im-
proved algorithm and the problem size.

The rest of this paper is divided into three sections. Section 2
first gives a review of two kinds of serial approaches to ordinary
Kriging, and then introduces the implementation details of parallel
algorithms. Section 3 presents the experimental results and makes
pairs of comparisons. The contributions of our work are sum-
marized in Section 4.

2. Methodology and implementation

2.1. The traditional serial approach to ordinary Kriging

In past decades, a large number of Kriging variants have been
developed. This study focuses on ordinary Kriging (OK) with an
intrinsic stationary regionalized random variable. The unobserved
points are predicted as the weighted linear average of observed
points, as shown by Eq. (1):
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In theory, OK provides the best linear unbiased prediction at
unobserved locations. That is to say, the estimator’s expected value
is equal to the true value, and the prediction error variance is
minimized (Cressie and Cassie, 1993). In order to ensure unbiased
estimation, the sum of the weight coefficients of all observed
points for the certain unobserved point must be equal to 1. Thus a
system of linear equations is built as in the following matrix form
(Eq. (2)):
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where ijγ stands for the variogram value between point i and point
j, and μ is a Lagrange multiplier.

To solve Eq. (2), many parallel algorithms first calculate the
inverse of the coefficient matrix, and then calculate the weight
vector by matrix–vector multiplication (Cheng, 2013; Pesquer
et al., 2011). In general, many efforts have been made towards the
parallelization of matrix operations (e.g., matrix sum, matrix
multiplication and matrix inverse) (Gutiérrez de Ravé et al., 2014).
In our computation, before solving the linear system, the coeffi-
cient matrix is decomposed into two matrices (a lower triangular
matrix L and an upper triangular matrix U) by the LU decom-
position method. Next, the decomposed system of linear equations
is solved directly by forward and backward substitution without
an explicit inverse matrix. This is a more efficient and more ac-
curate solution (Intel, 2013).

A classical algorithm of ordinary Kriging interpolation consists
of five steps:

1) Calculating the empirical spatial variogram values at different
lags to fit the theoretical variogram models (e.g., the spherical
model);

2) Calculating the variogram coefficient matrix of sample data
(observed points) and decomposing this matrix by the LU de-
composition method;

3) Calculating the variogram vector between one unobserved
point and all observed points;

4) Solving the decomposed system of linear equations to obtain
the weight vector, and then calculating the estimation of an
unobserved point;

5) Repeating steps 3 and 4 to work out the next unobserved point
until all unobserved points are estimated.

2.2. The improved serial approach to ordinary Kriging

Through the analysis of the steps described in Section 2.1, given
M and N stand for the sizes of unobserved and observed datasets
respectively, the time complexity of step 2 for the LU decom-
position is O(N3) while the time complexity of step 4 for solving
the decomposed system of linear equations reaches O(M*N2).
Frequently in practice, only a few sparse sample points are avail-
able to estimate many dense unknown points in a gridded space
for the generation of a smooth continuous prediction surface, and
this will result in that the time complexity of step 4 substantially
exceeds O(N3). It also turns out that the computation of weights
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