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a b s t r a c t

StrainModeler is a program constructed in the MATHEMATICA™ environment that performs 3D progressive
strain calculations for lines and planes undergoing any sequence of homogeneous deformations. The
main inputs to the system define the initial line or plane to be deformed and the deformation sequence
to be applied, including combinations of simple shear, pure shear and volume change. For the de-
formation of lines, the output of the program is the change of attitude of the initial line, which can be
represented by graphics or plotted in an equal-area projection. For the deformation of planes, the pro-
gram has several outputs: (i) change of attitude of the initial plane; (ii) magnitudes and ratio of the semi-
axes of the strain ellipse on the deformed plane; (iii) orientation of the major and minor axes of the strain
ellipse on the deformed plane; (iv) orientations of the axial planes of the folds formed on the deformed
plane, and (v) area change on the deformed plane. The variation of any of these parameters can be shown
against a linear parameter only linked to the number of steps involved in the deformation, as a kind of
“time” line, or it can be shown against the variation of a parameter of the strain ellipsoid (e. g.: major
axis/minor axis ratio). A sequence of directions can be also visualized as a curve in an equal-area plot.
Three applications of the program are presented. In the first, the deformation by simple shear of a plane
with any orientation is analyzed. In the second, we explore the formation of recumbent folds in layers
with different initial orientations for simple shear and pure shear deformations. In the third, we use
StrainModeler to analyze the deformation of a set of folds located in a ductile shear zone in the Variscan
Belt of NW Spain.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of deformation in rocks is an essential task in
structural geology. The strain of rocks is difficult to measure and its
analysis must be made by approximations based on several types
of homogeneous strain. Two types of approaches exist for the
analysis of deformation:

a) Analyze the strain variation throughout the rock volume. In this
approach, the strain at each material point within the rock must be
considered. For example, this is the method used to study the state of
strain in a folded layer to determine the kinematical folding me-
chanisms. In this case, the analysis is made by linearization of the
transformation involved in the deformation. Homogeneous strain in
small rock volumes is assumed in this approach. This is the method
used for example by Hudleston and Holst (1984), Holst and Fossen
(1987) and Bobillo-Ares et al. (2004).

b) The whole-rock strain approach. This assumes that the
boundaries of a large rock volume are deformed following the
rules of homogeneous strain or simple inhomogeneous strain, al-
though inside the body the strain is usually inhomogeneous. For
example, if we say that a rock body has been deformed in a
homogeneous simple shear regime, we assume that the bound-
aries of this body are deformed according to this type of strain. If
this body is layered, the layers will have undergone shortening or
stretching depending on their initial orientation in relation to the
deformation and on the character of the bulk deformation. The
shortening or stretching of the layers can be inhomogeneous, and
it can give rise to the development of folds or boudins respectively
(see, for example, Ramsay, 1980). In the case of development of
folds, it is assumed that the median surface of the folded layer
possesses the same final orientation as the layers would have had
if the strain had been homogeneous; this assumption has been
assumed implicitly by several authors (e. g.: Ramsay, 1980; Car-
reras et al., 2005; Fossen, 2010, Fig. 15.31) and has been tested in
numerical experiments by Llorens et al. (2013). In this paper, we
mainly follow this approach (b).
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The types of strain histories usually considered in the analysis
of the natural deformations of rocks are the following:

a) Progressive simple shear. This is an isochoric (no volume
change) non-coaxial strain history with the following proper-
ties: (1) Two families of orthogonal planes maintain their po-
sition during the deformation; (2) line segments on planes of
one of these families (shear planes) do not undergo changes in
length or orientation during deformation; (3) the displace-
ments of material points take place in a single direction or its
opposite. Simple shear can be homogeneous or in-
homogeneous. The latter is a type of strain that has been
commonly considered as a whole-rock strain for the kinematic
analysis of geological structures.

b) Progressive coaxial strain. This is a strain history in which the
orientations of the axes of the strain ellipsoid do not change
with the deformation with respect to material lines. It can be
with volume change or without volume change (pure shear).

Other types of strain history used for the analysis of the geo-
logical strain result from a combination of the above types. A type
of non-coaxial strain intermediate between pure and simple shear
is one in which the kinematic vorticity number (Truesdell, 1953;
Means et al., 1980) is lower than that of simple shear; it is named
“sub-simple shear” (De Paor, 1983; Simpson and De Paor, 1993).
This has been usually defined as the result of a simultaneous
combination of pure shear and simple shear. Sometimes it is in-
teresting to consider the successive superposition of coaxial de-
formation on simple shear or vice versa, but in these cases it is
necessary to bear in mind that the order of the superposition in-
fluences the final result. Another type of homogeneous strain
history described in the geological literature is the super-simple
shear (De Paor, 1983), in which the internal rotation is higher than
that of simple shear; this type seems rare in crustal scale de-
formation (Bailey et al., 2004) and is not further considered in this
paper.

Simple shear, coaxial strain and their combinations have been
described in detail by many authors (e.g. Truesdell and Toupin,
1960; Ramsay, 1967, 1980; Ramsay and Graham, 1970; Ramberg,
1975; Sanderson, 1982; Tikoff and Fossen, 1993). Nevertheless,
several problems related to these deformations are not yet re-
solved. An interesting question is related to the fact that in nature
it is possible to find layers in a variety of orientations in relation to
the reference axes usually used to describe the types of de-
formation cited above. In these cases, knowledge of the state of
strain and strain history in such planar surfaces is necessary to
explain some geometrical features of structures such as folds, fo-
liation, lineations and boudins.

In addition to the finite strain, knowledge of the progressive
strain has great relevance to the understanding of the develop-
ment of many geological structures, whose initiation and evolu-
tion is controlled by the incremental deformation. Obtaining the
variation of the main parameters that characterize the deforma-
tion of any line or plane (variations in orientation, length, etc.) as a
function of the parameters of the strain ellipsoid of the whole-rock
strain is one of the objectives of this paper.

Several previous contributions regarding the deformation of
lines and planes in a 3D deformation are noteworthy. Equations
relating the rotation of planes and lines to the deformation of the
rocks containing them were obtained by Flinn (1962) using the
deformation ellipsoid. He also borrowed the Fresnel construction
from optical mineralogy to determine the attitude and length of
the principal axes of shortening and extension in any plane.
Ramsay (1967, p. 154–158) presents equal-area projections con-
toured for longitudinal strain that facilitates an easy analysis of
these concepts. Lisle (1986) analyzed the non-coaxiality that

appears in the deformation of a plane which is inclined to the
principal axes of the strain ellipsoid in the case of a 3D coaxial
deformation.

Carreras (1975) applied the simple shear displacement function
to a planar surface inclined at any angle to the shear zone to obtain
the relationship between angles and shear strain. This relationship
was used by him to develop graphical and numerical methods to
determine shear strain from angular measurements of structural
elements of shear zones. In a similar line, Skjernaa (1980) obtained
equations for the reorientation of randomly oriented planes and
lines during progressive homogeneous simple shear.

Ramberg (1976) obtained equations for the orientation and the
length of the principal axes of the elliptical intersection between a
strain ellipsoid and a plane and Ramberg and Ghosh (1977) ana-
lyzed the rotation and progressive strain of a sheet embedded in a
matrix which undergoes rotational 3D strain under constant vo-
lume conditions. They obtained equations that can be used to
calculate the following: (i) the position and length of the principal
axes of the strain ellipsoid at any stage of the deformation; (ii) the
position and length of the principal axes of the strain ellipse in any
plane at any stage of the deformation; (iii) the position and length
of passive markers which initially coincided with the principal
axes of the strain ellipse in a plane and then rotated passively; and
(iv) the shear strain parallel to a plane or sheet.

Treagus and Treagus (1981) developed methods to determine
the orientation and length of the principal axes of the strain ellipse
in layers oblique to the axes of the strain ellipsoid both in the case
of known initial orientation and known deformed orientation.
These methods were used to analyze the obliquity between the
fold axes originated in the layer and the XY plane of the 3D
deformation.

Vollmer (1988) developed a computer model to deform
homogenously a quasi-planar surface with several initial pertur-
bations, and used it to analyze the formation of sheath-nappes in
the Norwegian Caledonides. To model the deformation, the surface
is divided in a set of quadrilaterals, each of which being a small
planar element which is homogeneously deformed. Davis and Ti-
tus (2011) give a review of computational techniques for homo-
geneous steady deformation and apply the matrix exponentials
and logarithms method to solve two problems: a forward problem
of constructing a new kinematic model of transpression and an
inverse problem of finding the best homogenous steady model for
a given set of field data.

At the present state of knowledge, a versatile and friendly
computer tool that can be used to perform progressive strain
calculations may be very useful for the structural geologist. In this
paper, a 3D analysis of the strain resulting from any specified se-
quence of homogeneous deformation is presented, with special
emphasis on combinations of simple shear, pure shear and volume
change. Transformations that a given plane or line undergoes as a
result of the deformation are analyzed. In order to automate the
calculations and to visualize the results of both the finite strain
and the progressive strain, this analysis has been used to develop a
new program, named ‘StrainModeler’, in the MATHEMATICA™ en-
vironment. Two examples of the application of this software are
presented. Firstly, it is used to shed light on the strain conditions of
the formation of recumbent folds, and then it is applied to unravel
the conditions of deformation in a sector of a kilometer-scale
natural ductile shear zone.

2. Theoretical background

In this section we present the mathematics that constitutes the
basis of StrainModeler. First of all, the method used to characterize
the homogeneous deformation involved in the analysis is
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