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a b s t r a c t

The No Free Lunch (NFL) theorems state that no single optimization algorithm is ideally suited for all

objective functions and, conversely, that no single objective function is ideally suited for all optimization

algorithms. This paper examines the influence of the NFL theorems on linearized statistical experimental

design (SED). We consider four design algorithms with three different design objective functions to

examine their interdependency. As a foundation for the study, we consider experimental designs for

fitting ellipses to data, a problem pertinent to the study of transverse isotropy in many disciplines.

Surprisingly, we find that the quality of optimized experiments, and the computational efficiency of their

optimization, is generally independent of the criterion–algorithm pairing. We discuss differences in the

performance of each design algorithm, providing a guideline for selecting design algorithms for other

problems. As a by-product we demonstrate and discuss the principle of diminishing returns in SED,

namely, that the value of experimental design decreases with experiment size. Another outcome of this

study is a simple rule-of-thumb for prescribing optimal experiments for ellipse fitting, which bypasses the

computational expense of SED. This is used to define a template for optimizing survey designs, under

simple assumptions, for Amplitude Variations with Azimuth and Offset (AVAZ) seismics in the specialized

problem of fracture characterization, such as is of interest in the petroleum industry. Finally, we discuss

the scope of our conclusions for the NFL theorems as they apply to nonlinear and Bayesian SED.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical experimental design (SED) is the theory and practice
of optimizing experiments, normally with the goal of maximizing
the expected information in collected data sets. Operationally, SED
uses a design criterion – a quantitative metric of experiment quality
– which is extremized with respect to the experiment by means of
an optimization algorithm (design algorithm).

Several design criteria and algorithms have been introduced to
the geosciences in the past decade (e.g., Curtis et al., 2004; Routh
et al., 2005; Stummer et al., 2004). The few comparisons that have
been conducted among these have focused either on comparing
design criteria or design algorithms. No study has yet compared
multiple design criteria and design algorithms together to examine
the interplay between them.

The No Free Lunch (NFL) theorems (Wolpert and Macready, 1997)
assert that no single optimization algorithm can perform optimally for
all objective functions and that no single objective function is ideally
suited for all optimization algorithms. If an optimization algorithm
performs well for one class of objective functions then it must perform

worse on average for the remaining classes of objective functions.
These theorems are clearly relevant to SED. We would expect
dependencies between design algorithms and design criteria for
two reasons. First, design criteria are potentially strongly nonlinear
with respect to the experimental designs they qualify. This gives rise
to high-dimensional optimization problems whose complexity
potentially interacts strongly with the design algorithm. Second,
many design algorithms are heuristic and either have no convergence
proofs or are known to globally converge only for special classes of
optimization problems. This underscores the possibility that design
criteria and algorithms are interdepend. When choosing design
criterion–algorithm pairings, it is important to be aware of inter-
dependencies that could benefit or hinder the design problem. Our
aim is to determine whether such pairings for linearized problems
mediate optimum experiments of significantly disparate quality and
computational expense.

As a foundation for the study we design experiments for an
ellipse fitting problem. This involves estimating the ellipticity and
orientation of an ellipse from a limited number of samples of its
error-contaminated surface. This problem arises in a variety of
theoretical and practical situations in engineering and technology,
including in the earth sciences (Grechka and Tsvankin, 1998;
Freeze and Cherry, 1979), solid-state physics (Charles, 1996),
medical imaging (Szabo, 2004), and material science (Newnham,
2005). The design problem is to optimize the azimuths where
samples should be taken along the ellipse surface.
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2. Background

We adopt the SED approach pioneered by Box and Lucas (1959)
and Draper and Hunter (1967), wherein linear SED methods are
applied to a linearization of a nonlinear model function about a
prior reference parameterization. This is not as sophisticated as a
nonlinear or generalized Bayesian design methods but our goal is to
investigate criterion–algorithm interdependence, and the scope
of this investigation requires efficient SED methods, for which
linearized methods are preferable.

2.1. Posterior covariance

Consider

d¼ f ðm,nÞ, ð1Þ

where f is a theoretical function relating data vector d to parameter
vector m with respect to experiment n. Adopting a Gauss–Newton
approach to the inverse problem, the least squares objective
function considered is

Y¼ JR�1=2
d ðDd�GDm0ÞJ

2
þJR�1=2

m ½mref�ðm0þDm0Þ�J
2, ð2Þ

where G¼qf/qm at m0 and n, Dd is the data residual, Dm0 is the
change in parameter vector m0, Rd is the expected data noise
covariance, and Rm is the expected prior model covariance about
reference parameter vector mref. The second term conditions the
inverse problem to favor solutions near mref (Chen et al., 2002).Y is
minimized when

Dm0 ¼ ½G
TR�1

d GþR�1
m �
�1½GTR�1

d Dd0þR�1
m ðmref�m0Þ�, ð3Þ

and the posterior parameter covariance matrix is

Rp ¼ GTR�1
d GþR�1

m

h i�1
, ð4Þ

Rp is a linearized measure of uncertainty in post-inversion para-
meter estimates, and many experimental design criteria are based
on it in some manner.

It is noteworthy that experimental designs optimized with
respect to Rp are conditional on the assumed reference model mref

and its expected covariance Rm. Optimum designs will vary as this
prior information is varied.

2.2. Design criteria

For practicality, a limited selection of design criteria is exam-
ined. Their mathematical details are in the appendices.

2.2.1. D-criterion and A-criterion

It is easiest to discuss the D-criterion and A-criterion together
because they are part of the same family of design criteria (Kiefer,
1974,1975). In linearized inverse theory, Sp forms an ellipsoidal
confidence region about the parameter estimates, assuming the
estimates are approximately multivariate Gaussian, and the
lengths of its semiaxes correspond to the eigenvalues of Sp.

The D- and A-criteria measure the size of this ellipsoid through
generalized means of the semiaxes lengths or the eigenvalues of Rp.
The D-criterion is proportional to the geometric mean of the
eigenvalues and is evaluated by FD¼det Rp. The volume of an
ellipsoid is proportional to the product of its semiaxes (Abramowitz
and Stegun, 1974), so the D-criterion is proportional to the volume
of the confidence region. The A-criterion is proportional to the
arithmetic mean of the eigenvalues and is evaluated by FD¼tr Rp,
so it is proportional to the mean length of the semiaxes of the
confidence ellipsoid. Thus, minimizingFD orFA overall permissible
experiments is equivalent to minimizing the size of the post-
experimental uncertainty region in two different senses.

Experimental designs minimizing these two measures are respec-
tively called D-optimal and A-optimal.

2.2.2. Linear dependence reduction.

Linear dependence reduction (LDR) is a method suggested for
data decimation by Sabatier (1977) and introduced to SED by Curtis
et al. (2004). Rather than measuring the size of uncertainty regions,
LDR focuses on the linearized relationship between data and model
parameters. The gist of the method is that a strongly linearly
dependent row in G signifies a datum that is related to the
parameters in a manner similar to other data observations in the
experiment. Strongly linearly dependent rows and their corre-
sponding data should thus be removed.

Experimental designs minimizing this linear dependence mea-
sure are called LD-optimal.

2.3. Design algorithms

Global optimization strategies such as the genetic and simu-
lated annealing algorithms are dependable for solving combina-
torial optimization problems like those sometimes found in
experimental design, but they are prohibitively expensive for large
problems. An alternative is to use greedy algorithms such as the
sequential design algorithms described below. An algorithm is
greedy if it makes locally – rather than globally – optimal updates
to the solution. Such methods typically converge more quickly than
global methods though often to suboptimal solutions (Cormen,
2009).

Three sequential design algorithms and one global one have
been considered, with the latter being treated as a control. The
sequential algorithms are called the construction, decimation, and
exchange algorithms, and the global one is the genetic algorithm
(GA). Each is detailed in the appendices. The appendices also give
update formulae that expedite sequential design algorithms. These
help avoid the explicit calculation of matrix inverses, determinants,
etc. implicit in the design criteria listed in Section 2.2.

2.3.1. Construction

Sequential design by construction, also sometimes called itera-

tive construction, constructs an experiment by adding observation
points (one at a time or in groups) until some desired stopping
criterion is met. Each added observation point is conditional on the
set of observations already assigned to the experiment. Stummer
et al. (2004), Wilkinson et al. (2006), Coles and Morgan (2009),
Guest and Curtis (2009), and Khodja et al. (2010) have all demon-
strated constructive SED methods for geoscientific experiment
optimization.

2.3.2. Decimation

Sequential design by decimation, sometimes also called iterative

destruction, is the converse of construction. This approach deletes
observation points from an experiment. Each deleted point is
conditional on the current experiment (similar to construction),
not on the set of deleted points. Curtis et al. (2004) have demon-
strated this technique.

2.3.3. Exchange

Sequential design by exchange is a hybrid, having both con-
structive and destructive components. It is motivated by the fact
that greedy algorithms do not generally guarantee global solutions.
Exchange addresses this by cycling through the observation points
in the current experiment and performing a test replacement with
all permissible observation points. Each point in the experiment is
so treated, and the test replacement that minimizes the objective
value of the experiment is exchanged for the current observation
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