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a b s t r a c t

In this work, we address the problem of transforming seismic reflection data into an intrinsic rock

property model. Specifically, we present an application of a methodology that allows interpreters to

obtain effective porosity 3D maps from post-stack 3D seismic amplitude data, using measured density

and sonic well log data as constraints. In this methodology, a 3D acoustic impedance model is calculated

from seismic reflection amplitudes by applying an L1-norm sparse-spike inversion algorithm in the time

domain, followed by a recursive inversion performed in the frequency domain. A 3D low-frequency

impedance model is estimated by kriging interpolation of impedance values calculated from well log data.

This low-frequency model is added to the inversion result which otherwise provides only a relative

numerical scale. To convert acoustic impedance into a single reservoir property, a feed-forward Neural

Network (NN) is trained, validated and tested using gamma-ray and acoustic impedance values observed

at the well log positions as input and effective porosity values as target. The trained NN is then applied for

the whole reservoir volume in order to obtain a 3D effective porosity model. While the particular

conclusions drawn from the results obtained in this work cannot be generalized, such results suggest that

this workflow can be applied successfully as an aid in reservoir characterization, especially when there is a

strong non-linear relationship between effective porosity and acoustic impedance.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

During the last decades, several methods for mapping acoustic
impedance from post-stack seismic amplitude data were devel-
oped and tested with the aim of providing additional information
for detailed reservoir characterization. Nowadays, most of the
research efforts in this field are focused in the inversion and
interpretation of variations of seismic reflection amplitude with
change in distance between source and receiver (amplitude vs.
offset) from pre-stack data. However, post-stack data obtained
from recorded P-waves are still widely used because of their ready
availability and low time-consuming processing. Because wells in a
reservoir field are often spaced at hundreds or even thousands of
meters, the ultimate goal of a seismic inversion procedure in the
context of reservoir characterization is to provide models not only
of acoustic impedance but also of other relevant physical proper-
ties, such as effective porosity and water saturation, for the inter-
well regions. Such quantitative interpretations may sometimes
require the use of other seismic attributes additionally to the
traditional seismic reflection amplitudes (Rijks and Jauffred, 1991;
Lefeuvre et al., 1995; Russell, 2004; Sancevero et al., 2005;
Soubotcheva, 2006).

The seismic inversion method that is presented in this work is
classified as a deterministic inversion method (Russell, 1988).
Although many recent papers have demonstrated some advantages
of geostatistical methods over deterministic methods (Francis,
2005; Robinson, 2001), the latter can still provide geologically
plausible acoustic impedance models at a much lower computa-
tional cost. The first deterministic inversion methods for acoustic
impedance mapping were developed in the late 70 s and became to
known generally as recursive inversion (Lavergne and Willm, 1977;
Lindseth, 1979). The basic premise of those and of all methods that
were subsequently developed in the 1980s is the local validity of
the 1-D convolutional model. During the 1980s, sparse-spike
inversion methods were developed consisting of some techniques
that make use of an additional premise that the reflections occur as
sparsely distributed spikes within a layered Earth (Oldenburg et al.,
1983; Russell, 1988). In this case the reflectivity function is
mathematically represented as the product of the reflection
coefficients and a Dirac delta function shifted by the two-way
travel time to each layer. Two well known methods that fall in this
category are the L1-norm sparse-spike inversion (Sacchi and
Ulrych, 1996), which is applied in the methodology described in
this work, and the maximum likelihood inversion (Hampson and
Russell, 1985).

Prediction of reservoir properties from acoustic impedance can
also be thought as a kind of inversion and traditionally have been
addressed through the application of multivariate statistics and,
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more recently, Neural Network (NN) methods. The main advan-
tages of NN methods over most traditional statistical methods can
be summarized as follows: (i) the ability to extract nonlinear
relationships between the input data and the target values; (ii) less
sensitivity to the presence of noise in the data; and (iii) there is no
need to known the underlying statistical distribution of the input
data. NN methods have been successfully applied in a wide variety
of applications in reservoir characterization such as porosity and
permeability prediction from seismic and well-log data or seismic
facies/attributes classification (Leiphart and Hart, 2001; Hampson
et al., 2001; Walls et al., 2002; Pramanik et al., 2004; Calderon,
2007). In general, these papers compare performances of NN
models with traditional regression methods, demonstrating that
the former can provide higher correlation coefficient between
actual and predicted reservoir property values and minimize the
problem of sparse well coverage.

2. Methodology

2.1. Seismic inversion

The basic premises behind all seismic inversion methods in the
context of this work are as follows: (i) the Earth can be represented
locally by a stack of plane and parallel layers with constant physical
properties; (ii) the seismic trace s(t) can be represented by the
convolution of the reflectivity coefficient series r(t) with a band-
limited wavelet w(t) and the addition of a random noise n(t):

sðtÞ ¼ rðtÞwðtÞþnðtÞ: ð1Þ

For zero incident angles, r(t) is directly related to the contrast in
the acoustic impedance (AI) of superposed layers through the
expression

rj ¼
IAjþ1�IAj

IAjþ1þ IAj
, ð2Þ

where rj is the reflection coefficient at the jth interface of a set of N

superposed layers, and IA¼ rv where r e v are the density and
P-wave velocity, respectively. Under these conditions and assum-
ing that multiple reflections were eliminated from the seismic data,
the AI value of each layer can be calculated from the knowledge of
the AI value of the layer above, through a recursive equation

IAjþ1 ¼ IAj

1þrj

1�rj

� �
, ð3Þ

which in turn can be generalized to provide the AI value of an
arbitrary M layer by

IAM ¼ IA1

YM
j ¼ 2

1þrj

1�rj

� �
: ð4Þ

The natural logarithm is applied to both sides of Eq. (4) in order
to obtain a linear approximation:

lnðIAMÞ ¼ lnðIA1Þþ
XM
i ¼ 2

2 riþ
r3

i

3
þ

r5
i

5
þ � � �

" #
, ð5Þ

from which we can discard the high-order terms leading to the
expression

AIM ¼ AI1 expð2
XM
j ¼ 2

rjÞ: ð6Þ

Eq. (6) is a practical formula used in recursive inversion for
transformation of reflectivity into impedance. AI1 is the known
acoustic impedance in the top layer and AIM is that of the Mth layer.
rj is the reflection coefficient of the jth layer. This approximation is

valid for most of the practical cases where rjr j0:3j (Oldenburg
et al., 1983; Berteussen and Ursin, 1983).

In practice, the AI values at the positions of each seismic sample
can be extracted from a 3D model covering the entire seismic
volume, calculated through ordinary kriging of the kwon AI values
at the well log positions. For a properly usage of the recursive
inversion, the seismic traces should be deconvolved into reflectiv-
ity series as suggested by Eq. (6). To accomplish this, we apply a
constrained sparse-spike optimization procedure that minimizes
the objective function

JðrÞ ¼ a
XM
j ¼ 1

jrjjþ
1

2
:

1

s ðs�WrÞ:2
ð7Þ

using the conjugate-gradient algorithm (Shewchuk, 1994). The first
term in Eq. (7) is provided in order to allow minimization of the L1-
norm of the reflectivities, where a controls the sparsity of the
solution. With the second term, the algorithm also minimizes
the difference between the synthetic seismic traces (Wr) and the
observed traces (s). W is a wavelet coefficient matrix and s is the
standard deviation of the seismic data noise. Other optimization
algorithms can also be used to minimize Eq. (7), such as Iterative
Reweighted Least Squares (Björck, 1996) or soft-tresholding algo-
rithms (Loubes and De Geer, 2002).

It is important to point out that this constrained sparse-spike
inversion will provide an impedance model that does not display
the actual reflection series but displays only the largest reflectors
(Oldenburg et al., 1983). In other words, this means that small
wavelength features in the log impedance curve will not be
recovered by the inversion and, therefore, the interpreter has to
be cautious while analyzing the inversion results.

After estimating r from the seismic amplitudes, then it is
inverted into AI according to the following sequential steps
(Ferguson and Margrave, 1996):

(1) compute the linear trend of a spatial correspondent AI vector
and subtract it, obtaining a residual AIres vector;

(2) compute the Fourier spectra of AIres;
(3) apply Eq. (6) to the reflectivity series, obtaining a relative AIrel

vector;
(4) compute the Fourier spectra of AIrel;
(5) determine a scalar a to match the mean power of AIrel and AIres;
(6) multiply the spectra of AIrel by a;
(7) low-pass filter AIres and add to the result of step (6);
(8) inverse Fourier transform the result of step (7); and
(9) add the low-frequency trend from step (1) to the result of

step (8).

It is of course possible to include an extra constraint on
impedances directly in Eq. (7). However, by the approach described
in this paper it is possible to keep control of the frequency contents
involved and the frequency cut-offs to properly add the trend in
acoustic impedance.

Due to the sparse distribution of wells, the low-frequency trend
of step (1) was extracted from spatial correspondent AI traces
estimated by kriging. A low cut-off for coupling the low frequency
trend and a high cut-off were defined by finding where the energy
content of the original seismic traces approaches to zero in the
amplitude spectrum. This characterizes the band-limited nature of
the seismic data.

2.2. Porosity prediction using Neural Networks

The procedure outlined here can be applied to reservoirs that do
not show a linear relationship between AI and the reservoir property
that needs to be mapped. For the particular example shown in this
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