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a b s t r a c t

Complexities of geological processes portrayed as certain feature in a map (e.g., faults) are natural
sources of uncertainties in decision-making for exploration of mineral deposits. Besides natural sources
of uncertainties, knowledge-driven (e.g., fuzzy logic) mineral prospectivity mapping (MPM) is also pla-
gued and incurs further uncertainty in subjective judgment of analyst when there is no reliable proven
value of evidential scores corresponding to relative importance of geological features that can directly be
measured. In this regard, analysts apply expert opinion to assess relative importance of spatial evidences
as meaningful decision support. This paper aims for fuzzification of continuous spatial data used as proxy
evidence to facilitate and to support fuzzy MPM to generate exploration target areas for further ex-
amination of undiscovered deposits. In addition, this paper proposes to adapt the concept of expected
value to further improve fuzzy logic MPM because the analysis of uncertain variables can be presented in
terms of their expected value. The proposed modified expected value approach to MPM is not only a
multi-criteria approach but it also treats uncertainty of geological processes a depicted by maps or spatial
data in term of biased weighting more realistically in comparison with classified evidential maps because
fuzzy membership scores are defined continuously whereby, for example, there is no need to categorize
distances from evidential features to proximity classes using arbitrary intervals. The proposed continuous
weighting approach and then integrating the weighted evidence layers by using modified expected value
function, described in this paper can be used efficiently in either greenfields or brownfields.

& 2014 Elsevier Ltd. All rights reserved.

Introduction

Knowledge- and data-driven are two major types of ap-
proaches to create and integrate weighted evidential layers for
mineral prospectivity mapping (MPM) to delineate target areas for
further exploration of a certain deposit-type (Bonham-Carter,
1994; Carranza, 2008). The theory of fuzzy sets and fuzzy logic
(Zadeh, 1965) has been applied in knowledge-driven assignment
of evidential scores that need expert judgments reflecting realistic
spatial as well as genetic associations between spatial evidence
and mineral deposits of the type sought (e.g., D’Ercole et al., 2000;
Knox-Robinson, 2000; Carranza and Hale, 2001; Porwal et al.,
2003; Tangestani and Moore, 2003; Rogge et al., 2006; Nykänen
et al., 2008; Lusty et al., 2012).

The assignment of fuzzy membership values to evidential fea-
tures in the [0,1] range, also called fuzzification of spatial evidence,
is the most important stage in fuzzy MPM (Carranza, 2008)

because evidential scores should adequately represent the relative
importance of geological features (or data) in the process of mi-
neralization, however evidence is vaguely-known or completely
unknown (e.g., Ye, 2011; Xu, 2007a,b). However, knowledge-driven
evidential scores are assigned based on the analyst's expert
judgment, which is inherently subjective, but an analyst usually
cannot make an exact choice because of fuzziness (i.e., when there
is vague evidence and no reliable proven value of evidential scores
for a proposition). Thus, in cases of fuzziness, certain fuzzy
membership values in the [0,1] range can be preferred by an
analyst as evidential scores of vague evidence. This practice has
been used in fuzzy logic MPM to delineate target areas for further
exploration (e.g., D’Ercole et al., 2000; Knox-Robinson, 2000;
Carranza and Hale, 2001; Porwal et al., 2003; Tangestani and
Moore, 2003; Rogge et al., 2006). However, because expert judg-
ment is subjective, defining fuzzy membership values in the [0,1]
range as quantitative scores of evidential features is a source of
uncertainty in MPM.

Natural resource management and exploration targeting are
plagued with uncertainties of various kinds (Runge et al., 2011;
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McCuaig et al., 2010). Vagueness, ambiguity, similarity, possibility,
probability, fuzziness, randomness, and imprecision are different
types or sources of uncertainty (Celikyilmaz and Burhan Türksen,
2009). Dissimilarities of geological settings are also natural sources
of uncertainties in decision-making for assignment of evidential
scores in MPM (McCuaig et al., 2010; Lisitsin et al., 2013), even in
areas with simple geology (Van Loon, 2002). Geological modeling
of mineral systems is complex because there are significant un-
certainties in knowledge as well as data about such systems
(McCuaig et al., 2010) and they are rarely accurately and precisely
represented in existing geological datasets (Lisitsin et al., 2013).
For example, data may indicate the presence of evidential features
of a deposit-type sought (e.g., geochemical anomaly of indicator
elements, favorable host rocks) but mineral occurrence is not ob-
served in the field, and vice versa. Besides natural sources of un-
certainties, knowledge-driven (e.g., fuzzy logic) MPM is also pla-
gued and incurs further uncertainty arising from subjective judg-
ment of analyst to fuzzify evidential data.

Recently, Lisitsin et al. (2013) applied Monte Carlo simulation to
model uncertainty of geological interpretations resulting from
subjective expert opinion in fuzzy logic MPM. They assigned sev-
eral evidential scores to a certain feature to obtain a distribution
function of evidential scores as input probability distribution to
support Monte Carlo simulation. This is an effective method for
modeling uncertainty where there are some primary reliable his-
torical data for supporting the analyst to obtain a probability
distribution of uncertain variables (e.g., Fairbrother et al., 2007;
Sari et al., 2009; Mun, 2006). However, the result of Monte Carlo
simulation is affected by the probability distribution of the input
uncertain variables (e.g., Mun, 2006). In knowledge-driven MPM,
there is no reliable proven evidential score corresponding to re-
lative importance of geological features that can be measured di-
rectly. Therefore, if evidential scores are assigned based on judg-
ment of several analysts, the probability distributions of such
scores carry the uncertainties of expert judgments as well.

Furthermore, in fuzzy logic MPM, distances to geological fea-
tures are generally categorized into some proximity classes using
arbitrary intervals of distance and then the same score is assigned
for all distances in each proximity class (e.g., Carranza and Hale,
2001; Porwal et al., 2003; Rogge et al., 2006; Lisitsin et al., 2013).
Therefore, this existing practice in fuzzy logic MPM is sensitive to
the widths of classes of distances and the relative importance of
every distance to geological features is not really evaluated as
proxy evidence of mineral prospectivity. However, it has been the
traditional practice in MPM to discretize continuous values into
categorized data to facilitate understanding of the relation be-
tween predictor variables and the target variable (e.g., Bonham-
Carter, 1994; Cheng and Agterberg, 1999; D’Ercole et al., 2000;
Knox-Robinson, 2000; Carranza and Hale, 2001; Luo and Dimi-
trakopoulos 2003; Porwal et al., 2003, 2004, 2006; Rogge et al.,
2006; Carranza, 2008; González-Álvarez et al., 2010; Markwitz
et al., 2010; Lisitsin et al., 2013). Nevertheless, as has been shown
in MPM by Nykänen et al. (2008) and as has been shown in other
knowledge fields by many researchers (e.g., Clenshaw and Olver,
1984; Sakawa and Yauchi, 1999; Benitez-Read et al., 2005; Nar-
matha Banu and Devaraj, 2012; Ray, 2012; Guillén-Flores et al.,
2013; Silva et al., 2014; Xie et al., 2014), it must be pointed out that
discretization of continuous values is not needed in the fuzzifica-
tion of evidence for a particular proposition.

Considering the caveats (i.e., subjective nature) of fuzzification
of spatial evidence for MPM, recent works on fuzzification of
geochemical anomalies (Yousefi et al., 2012, 2013, 2014), proximity
to intrusive contacts (Yousefi et al., 2013), and fault density
(Yousefi et al., 2014) strive to assign continuous fuzzy evidential
scores. Following Nykänen et al. (2008), Yousefi et al. (2012, 2013,
2014) and Lisitsin et al., (2013), this paper aims for fuzzification of

continuous-value spatial data used as proxy evidence in MPM. In
addition, this paper proposes to adapt the concept of expected
value to further improve fuzzy logic MPM because the problem of
modeling evidential attributes that are incompletely known or
completely unknown (Xu, 2007a,b) and the relative importance
and integration of fuzzy evidential values can be and has been
addressed by using expected values (e.g., Heilpern, 1992, 1997;
Rubinstein, 1981; Wang and Chin, 2011; Ye, 2011; Liu, 2013; Gupta
et al., 2013). The expected value approach is based on the idea that
event level interaction and probabilities, here evidential attributes
and their corresponding evidential scores representing the prob-
ability of mineral deposit occurrence, can be averaged to produce
unbiased estimates that properly account for potential future
events in modeling (e.g., Mosher et al., 2010). The expected value
method in conjunction with fuzzy models has been applied in
ranking and decision-making problems (e.g., Heilpern, 1992; Guo
and Tanaka, 2001; Wang and Zhang, 2009 a,b; Wang and Chin,
2011; Ye, 2011; Gupta et al., 2013). Besides using fuzzy logic MPM
with continuous weighted evidential maps, this paper proposes a
modified expected value integrating approach whereby geo-ex-
ploration data inputs are first fuzzified using continuous fuzzy
membership values, and then their expected values are used to
support decision-making in MPM.

To demonstrate the procedure of fuzzification of continuous-
value spatial evidence for MPM using a modified expected value
approach that is suitable in greenfield areas, we chose a case study
area in the Kerman province in southeast Iran where there are
only nine known occurrences of porphyry-Cu deposits. This
number of mineral deposit occurrences is inadequate for data-
driven MPM (c.f. Carranza, 2004). We used these few deposits only
as a set of testing samples to evaluate efficiency of the metho-
dology, developed in this paper, for mapping mineral
prospectivity.

Methods and results

In this study, we used a pixel size of 100 m�100 m in all of the
maps stored in a GIS. This cell size was obtained by using the
function of scale number recommended by Hengl (2006).

For fuzzification of continuous-value spatial evidence data, we
first analyzed (i) geochemical multi-element data to derive a map
of multi-element signature of porphyry-Cu mineralization, and (ii)
extracted relevant features from the geological map to create a
map of distances to intrusive contacts and a map of density of
faults to depict, respectively, heat-source and structural controls
on porphyry-Cu mineralization. The continuous values in the de-
rived maps (i.e., factor scores representing multi-element geo-
chemical signature, fault density (FD), and distance to intrusive
contacts) do not lie within the [0,1] range, and thus are not ap-
propriate for fuzzy MPM. In MPM, the main goal is to classify a
region into highly prospective areas as targets for further ex-
ploration, areas with very low priority for prospecting, and some
classes between them. Thus, MPM is a classification problem, and
prospectivity models can be portrayed as classified maps. Trans-
formation of data (e.g., binarization, multi-class representation,
and continuous-value fuzzification) provides a set of values with
more discriminatory information and less redundancy for classi-
fication (Micheli-Tzanakou, 1999). Defining a suitable non-linear
transformation into a new space could facilitate interpretation of a
pattern (e.g., dispersion pattern of geochemical indicator ele-
ments) for a set of evidential values in MPM compared to their
original space (Bishop, 2006; Yousefi et al., 2014). The transfor-
mation of continuous-value data using a logistic sigmoid (or
S-shaped) function gains an optimal decision boundary for clas-
sification (Bishop, 2006). A logistic sigmoid transformation has
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