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a b s t r a c t

There is a continuous challenge in identifying and propagating geologically realistic features into re-
servoir models. Many of the contemporary geostatistical algorithms are limited by various modelling
assumptions, like stationarity or Gaussianity. Another related challenge is to ensure the realistic geolo-
gical features introduced into a geomodel are preserved during the model update in history matching
studies, when the model properties are tuned to fit the flow response to production data. The above
challenges motivate exploration and application of other statistical approaches to build and calibrate
reservoir models, in particular, methods based on statistical learning.

The paper proposes a novel data driven approach – Multiple Kernel Learning (MKL) – for modelling
porous property distributions in sub-surface reservoirs. Multiple Kernel Learning aims to extract relevant
spatial features from spatial patterns and to combine them in a non-linear way. This ability allows to
handle multiple geological scenarios, which represent different spatial scales and a range of modelling
concepts/assumptions. Multiple Kernel Learning is not restricted by deterministic or statistical modelling
assumptions and, therefore, is more flexible for modelling heterogeneity at different scales and in-
tegrating data and knowledge.

We demonstrate an MKL application to a problem of history matching based on a diverse prior in-
formation embedded into a range of possible geological scenarios. MKL was able to select the most
influential prior geological scenarios and fuse the selected spatial features into a multi-scale property
model. The MKL was applied to Brugge history matching benchmark example by calibrating the para-
meters of the MKL reservoir model parameters to production data. The history matching results were
compared to the ones obtained from other contemporary approaches – EnKF and kernel PCA with sto-
chastic optimisation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Sub-surface reservoir characterisation is subject to vast un-
certainties that make prediction of the reservoir dynamic beha-
viour a challenging task, which usually involves history matching
to calibrate a model to dynamic data. Uncertainties in reservoir
characterisations are of different kinds: (i) data uncertainty asso-
ciated with the observation/calibration errors (as depicted in
Arnold et al., 2013); (ii) model uncertainty related to the model
description (e.g. assumptions, equations, parameters etc., see
Massonnat, 2000); (iii) model solution errors subject to the nu-
merical solver algorithm and discretisation accuracy used (e.g. in
O’Sullivan and Christie, 2005); (iv) model inadequacy representing
the physics missing from the model that can be accounted for by

other means (e.g. after Kennedy and O’Hagan).
History matching (HM) of reservoir models to dynamic data

provides a way to infer model uncertainty to make more accurate
predictions. Traditionally history matching becomes an exercise in
inferring the model parameter values, that are chosen based on
the given model description. Inferring uncertainty related to
geological model description through history matching remains
challenging, because it often needs to be done across a set of
model with different parameters and even equations (e.g. Gaus-
sian vs Boolean).

The static model or “geomodel” encapsulates the best under-
standing of the relationship between geological and petrophysical
parameters based on the geological interpretation, e.g. deposi-
tional environment, selection and description of facies, etc. Geo-
logical interpretation is one of the main uncertainties commonly
biased towards a subjective opinion and is often difficult to rig-
orously quantify (Bond et al., 2007). Uncertainty from the
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geological interpretation may often prevail over the uncertainty
coming from the chosen set of the model parameters or the subs-
scale variability, the latter is represented by the stochastic nature
(seed) of a geomodelling algorithm. Therefore, it is important to
history match across multiple plausible model descriptions/geo-
logical interpretations where relevant. Geostatistical algorithms
are traditionally used to describe the distributions of spatial
properties in geomodels. Geostatistical algorithms are good in
establishing the appropriate level conditioning to geological
measurement data. A range of stochastic geostatistical algorithms
based on a covariance/variogram function, objects or training
images are routinely used to populated the geomodel grid with
lithological and petrophysical properties (Chiles and Delfiner,
2009; Mariethoz and Caers, 2014). All of them involve evaluation
of the model dependent parameters: object geometries and pla-
cements in the object-based models; variogram correlation range
and anisotropy for Gaussian or Indicator simulations; training
image definition and appropriate local transformation for multi-
point statistics (MPS) models.

These parameters are often inferred in a history matching task
within the single chosen set of model equations, e.g. using a single
training image or a certain set of object shapes (with limited al-
lowed transformations). For example, the history matching of the
variogram model parameters of a Gaussian Random Field model
description was done through a Bayesian uncertainty quantifica-
tion framework (Demyanov et al., 2004). History matching of
channelised reservoir training image based models with realistic
prior information was done in (Rojas et al., 2014a,b). More re-
cently, the challenge in accounting uncertainty across multiple
model definitions in history matching has been tackled in (Park
et al., 2013; Rojas et al., 2013). They considered different geological
interpretations with multiple training images and implements
history matching in the distance metric space.

Calibration of geostatistical models to dynamic data still re-
mains a challenge for the industry, though a lot of research has
been done in developing history matching techniques that include
gradual deformation method (GDM) (Hu, 2000); probability per-
turbation approach (Caers and Hoffman, 2006), which extends
GDM to probabilistic Bayesian formulation; adaptation of popu-
lation based stochastic optimisation algorithms (Mohamed et al.,
2010a,b; Schulze-Riegert et al., 2002), other gradient based ap-
proaches for this problem (Gomez et al., 2001; Bissell et al., 1997).

Among other approaches, emerged more recently, there is a
pattern based history matching with multi-point statistics facies
modelling in (Melnikova et al., 2015), where spatial probabilistic
information is elicited from training images and then inferred in a
Bayesian way. Ensemble based data assimilation approach, such as
EnKF, have been also widely used to evaluate uncertainty with an
ensemble of calibrated models (Evensen, 1998). Ensemble based
approaches have an advantageous capability of more flexible in-
tegration of prior knowledge – in a form of initial prior set of
models, which are gradually assimilated through perturbation of
the model state to fit the observed dynamic response. Such setting
is suitable to account for multiple possible prior model states,
which represent uncertainty in geological reservoir description
(e.g. as in Peters (2008)). However, preserving geological reslim in
the posterior ensemble still remains a challenge. Several history
matching studies have been performed following this approach
(Oliver and Chen, 2011; Chen et al., 2010; Mohamed et al., 2010a).
Clustering across an ensemble of geological realisations was im-
plemented in adaptive sparse model representation in a history
matching study by Khaninezhad and Jafarpour (2014).

In this paper we propose a way to history match a reservoir
model across different possible prior geological scenarios (model
descriptions). We use a data driven kernel based model to popu-
lated petrophysical reservoir properties to integrate multiple types

of data: observed data from wells, soft seismic information and
multiple geological concepts (prior ensemble). Multiple Kernel
Learning (MKL) model selects relevant spatial features from multi-
scale input information. The MKL model is then history matched to
production data using adaptive stochastic sampling (particle
swarm optimisation).

2. Modelling approaches

2.1. Data integration in reservoir modelling

Traditional geostatistics have been used for efficient data in-
tegration in reservoir modelling. Geostatistical paradigm allows
integrating point and pattern data through model conditioning to
data with a linear regression under a two-point covariance spatial
relationship. Secondary (soft) correlated information can be in-
tegrated through a linear relation, e.g. kriging with external drift
(Chiles and Delfiner, 1999) or collocated co-kriging (Almeida and
Journel, 1994), see Annexure for more details.

More recently multipoint statistical moments have been im-
plemented in geostatistical prediction (Strebelle, 2002; Dimi-
trakopoulos et al., 2010) to extend the flexibility of spatial corre-
lation model beyond the two-point covariance. Multi-point sta-
tistics approach is superior to a classical two-point statistics, be-
cause it provides a richer, more flexible and a generalised de-
scription of spatial correlation (Mariethoz and Caers, 2014), see
Annexure for more details. However, it is still subject to the sta-
tionarity assumption of some form (training image) and it has a
limited linear capacity in integrating multivariate and multi-scale
secondary information (Strebelle and Zhang, 2005; Hu and Chu-
gunova, 2008). The problem of non-stationarity is often addressed
through accounting for a trend, which usually implies a linear
relation with the simulated probability field. A more recent pat-
tern simulation algorithm, which handles non-stationary training
images using a distance metric approach, was proposed in (Hon-
arkhah and Caers, 2012).

In the present work we will address the problem of improving
the flexibility of spatial reservoir property model description with
a non-linear integration of spatial information from multiple
patterns, which represent possible geological concepts. This ap-
proach provides more flexibility in data conditioning within a
statistical learning paradigm and is not restricted by stationary
assumptions, since it is purely data driven.

2.2. Statistical learning in reservoir modelling

In recent years statistical learning (Vapnik, 1995) has become
more intensively used for modelling geological reservoir proper-
ties. Data driven algorithms have shown to be an efficient alter-
native to traditional modelling approaches for difficult problems,
e.g. dealing with noisy data or non-stationary cases. Kernel
learning methods – Kernel PCA, Support Vector Machines (SVM),
Multiple Kernel Learning (MKL) – have been applied for modelling
and classification of reservoir properties (Sarma et al. 2008; De-
myanov et al., 2008, 2011; Al-Anazi and Gates, 2010). Kernel based
methods have been also used for multi-dimensional scaling of
model realisations into the metric space for more representative
ranking and description of relations between different geological
scenarios (Scheidt and Caers, 2009).

In earlier work (Demyanov et al., 2008) we have demonstrated
capabilities of the semi-supervised support vector regression
(SVR) to successfully model petrophysical property distributions in
a fluvial reservoir. SVR model computes linear regression in high
dimensional space (the reproducing kernel Hilbert space) using a
single kernel for implicit mapping of the data. However, a single
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