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a b s t r a c t

In groundwater modeling, Monte Carlo Markov Chain (MCMC) simulations are often used to calibrate
aquifer parameters and propagate the uncertainty to the quantity of interest (e.g., pollutant concentra-
tion). However, this approach requires a large number of flow simulations and incurs high computational
cost, which prevents a systematic evaluation of the uncertainty in the presence of complex physical
processes. To avoid this computational bottleneck, we propose to use an approximate model (proxy) to
predict the response of the exact model. Here, we use a proxy that entails a very simplified description of
the physics with respect to the detailed physics described by the “exact” model. The error model ac-
counts for the simplification of the physical process; and it is trained on a learning set of realizations, for
which both the proxy and exact responses are computed. First, the key features of the set of curves are
extracted using functional principal component analysis; then, a regression model is built to characterize
the relationship between the curves. The performance of the proposed approach is evaluated on the
Imperial College Fault model. We show that the joint use of the proxy and the error model to infer the
model parameters in a two-stage MCMC set-up allows longer chains at a comparable computational cost.
Unnecessary evaluations of the exact responses are avoided through a preliminary evaluation of the
proposal made on the basis of the corrected proxy response. The error model trained on the learning set
is crucial to provide a sufficiently accurate prediction of the exact response and guide the chains to the
low misfit regions. The proposed methodology can be extended to multiple-chain algorithms or other
Bayesian inference methods. Moreover, FPCA is not limited to the specific presented application and
offers a general framework to build error models.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Simulations of subsurface flow are important in many appli-
cations, such as groundwater protection and remediation, water
prospection, exploration of hydrocarbon resources, and nuclear
waste disposal. One of the main challenges is to estimate a con-
tinuous distribution of the underground model parameters from a
sparse set of observational sites. This lack of information on model
input propagates to the quantities of interest (for instance, the
concentration of a pollutant in a drinking well), whose exact va-
lues remain uncertain. Model calibration using historical in-
tegrated data (for example, time series of concentration or pres-
sure at observation wells) is often used to reduce the uncertainty
on model parameters by relying on Bayes theorem. A widespread
approach for numerical application of Bayes rule is to use Monte-
Carlo Markov-Chain (MCMC) simulations (Robert and Casella,

2004) to sample the posterior probability density function. While
MCMC is theoretically robust and ensures convergence to the true
posterior distribution under mild constraints, in practice it is
subject to several limitations due to the cost of the large number of
required flow simulations, which can become prohibited in the
presence of limited computational resources. Indeed, the finite
length chains should be able to explore all areas of the prior space
in order to provide samples from the posterior distribution. To
achieve this goal, it is tempting to increase the step length of the
chains, but this would result in a drastic reduction of the accep-
tance rate (which should ideally remain around 20–50% in mul-
tidimensional space) and subsequently in a high number of wasted
simulations (Roberts et al., 1997).

To avoid these issues, Efendiev et al. (2005, 2006) and Christen
and Fox (2005) have introduced a two-stage MCMC, which em-
ploys a less computationally expensive solver to obtain a first
evaluation of the proposal and decide whether it is useful to run
the exact solver. This allows them to reduce the number of exact
simulations that will be rejected and thus increase the acceptance
rate. This methodology has been first explored by Christen and Fox
(2005) to recover resistor values of an electrical network from
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measurements performed at the network boundary. They have
obtained an increase in acceptance rate (the number of exact si-
mulations accepted over the number of exact simulations run;
first-stage simulations are not taken into account as their cost is
assumed to be negligible). Both Efendiev et al. (2006) and Christen
and Fox (2005) have shown that, under certain hypotheses, the
solution converges to the posterior distribution. Efendiev et al.
(2005, 2006) and Dostert et al. (2008) have applied this metho-
dology in the context of flow in porous media. As first-stage solver
they have used a multiscale method, which combines a global
coarse solution with a number of local fine solutions. If the coarse
solution is accepted, local solutions are employed to reconstruct a
finer solution on the original grid, based on which the second-
stage evaluation is performed. While this allows for the necessary
convergence assumptions to be satisfied (namely, smoothness and
strong correlation), the computational gain of the two-stage set-
up is limited. Indeed, the reconstruction step (necessary for the
second-stage evaluation) is cheap with respect to the cost of
constructing and solving the coarse problem used at the first-
stage. Other applications of two-stage MCMC have used poly-
nomial chaos response surfaces (Zeng et al., 2012; Elsheikh et al.,
2012; Laloy et al., 2013) as first-stage model. The computational
gain is much higher, despite some additional cost required to set
up the polynomial chaos model.

The use of inexact solvers requires designing error models to
account for the discrepancy between approximate and exact re-
sponses. In the context of multiscale approaches, Kennedy and
O'Hagan (2001) used a Gaussian-process method to represent
model inadequacy. O'Sullivan and Christie (2005, 2006) employed
error modeling to reduce the bias in history matching resulting
from the use of upscaled reservoir models. Efendiev et al. (2009)
proposed non-linear error models in the context of ensemble-level
upscaling. Scheidt et al. (2010), for instance, used a distance metric
to account for upscaling errors in ensemble history matching.
More specifically to two-stage MCMC, Cui et al. (2011) proposed to
adapt the error model at each iteration: they used information on
the discrepancy between the exact and approximate models at the
previous iteration to correct the result of the successive iteration.
However, this approach provides a good correction only for pro-
blems that are smooth enough.

Here, we propose a different strategy that combines a two-
stage MCMC set-up with a methodology recently presented by
Josset et al. (2015). We use an approximate model (proxy) that
assumes a very simplified physics with respect to the problem
under consideration, and we construct an error model to account
for the approximation errors. The error model is purpose oriented
as it is tailored directly for the quantities of interest following an
approach typical of machine learning. For a subset of realizations,
the responses of both the proxy and the exact models are eval-
uated and the mapping between the two is learned by means of
tools from functional data analysis (Ramsay, 2006; Ramsay et al.,
2009). Josset et al. (2015) applied this methodology to propagate
the uncertainty on the permeability field to the concentration of a
pollutant in the observational well. Here, the methodology is
tested on a complex problem of Bayesian inference, the Imperial
College Fault (ICF) test case, which is a benchmark problem first
published by Tavassoli et al. (2004) and repeatedly explored in
many studies (e.g., Demyanov et al., 2010; Mohamed et al., 2011,
2012).

The paper is structured as follows: we first describe the ICF test
case and review the literature about the calibration of this model
(Section 2). Next, we present the novel methodology, which uses a
purpose-oriented error model within a two-stage MCMC set-up
(Section 3). Then, we specifically construct and evaluate the error-
model approach for the ICF problem (Section 4.1). Finally, we
compare and discuss the results of the two-stage MCMC with the

classic Metropolis–Hastings algorithm (Section 4.2).

2. The Imperial College Fault (ICF) test case

The ICF test case was first published by Tavassoli et al. (2004,
2005) as a simple yet challenging example of history matching in
petroleum engineering applications. Since then, ICF has proved a
difficult test for optimization techniques due to numerous local
minima. The ICF model consists of a layered reservoir disrupted by
a fault (Fig. 1), in which water is injected at the left-hand boundary
while the displaced fluids are recovered at the right-hand
boundary. The layer-cake model of the reservoir permeability is
described by three parameters: the conductivity of the high per-
meability facies, Khigh, the conductivity of the low permeability
facies, Klow, and the fault throw, h. The true parameters are
K 131.6 mdhigh = , K 1.3 mdlow = and h¼10.4 ft. A uniform distribu-
tion a b,[ ] (where a and b are the bounds of the distribution) is
attributed to each parameter as prior.

The calibration of the parameters to the observational data (oil
and water production rates) appeared to be a challenging history
matching problem. Due to the nature of the permeability field,
several parameter combinations, corresponding to narrow regions
of the parameter space, can reproduce the observational data with
satisfactory accuracy. Between these regions of good quality, the
misfit is very high due to the very irregular response surface that
results from the strong fluctuations of the connectivity across the
fault when h is varied. We refer to Fig. 9 for a 1D cross-section cut
of the complex misfit surface that characterizes this problem.

Many optimizations and inference techniques have been ap-
plied to the ICF problem over the years. The first studies of this test
case (Tavassoli et al., 2004, 2005; Carter et al., 2006) have em-
ployed a pure Monte Carlo approach, which required nearly
160,000 samples of the parameter space. Christie et al. (2006)
demonstrated that a good representation of the uncertainty can be
inferred from a few thousand samples using Genetic Algorithm
Important Sampling with artificial neural network proxy. More
recently, Demyanov et al. (2010) have used Support Vector Ma-
chines (SVM) with a small number of flow simulations (about
700); and Mohamed et al. (2011) have employed Particle Swarm
Optimization (PSO) using 2050 flow simulations. A Bayesian in-
ference approach close to two-stage MCMC has been presented by
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Fig. 1. The permeability map of the ICF test case and the observed data used for the
history matching. As prior, a uniform distribution is attributed to each parameter,
i.e., P h 0,60( ) = [ ] for the fault throw h, P Khigh 100,200( ) = [ ] for the permeability of
the most permeable facies Khigh, and P Klow 0,50( ) = [ ] for the permeability of the
least permeable facies Klow.
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