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a b s t r a c t

Accurate estimates of the higher order comoments are needed in
asset allocation. We derive explicit formulas for the higher order
comoments under the assumption that stock returns are generated
by a multifactor model and show that this assumption leads to a
substantial reduction in the number of parameters to estimate
compared to the traditional approach. An out-of-sample analysis
of the performance of portfolio allocation criteria that depend on
the higher order comoments illustrates the usefulness of the pro-
posed methodology.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The distribution of asset returns is often asymmetric and heavy tailed. If there is no estimation
error, most investors would be willing to sacrifice expected return and/or accept a higher volatility
in exchange for a higher skewness and lower kurtosis leading to a lower downside risk (e.g. Ang
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et al., 2006; Harvey and Siddique, 2000). This trade-off between positive preferences for odd moments
(mean, skewness) and negative preferences for even moments (variance, kurtosis) can be conveniently
summarized into a single objective function using a Taylor expansion of the expected utility function
as objective (as e.g. in Jondeau and Rockinger, 2006 or Martellini and Ziemann, 2010) or a portfolio
downside risk objective based on the Cornish-Fisher expansion (e.g. Boudt et al., 2013).

The important caveat is that portfolio moments need to be estimated, and that, without restrictions
on the data generating process, the number of parameters to estimate becomes quickly very large
when the dimension of the investment universe increases. This curse of dimensionality makes the
unrestricted estimators of the first four (co) moments almost infeasible for moderately large dimen-
sions. Suppose e.g. that we have a universe of 20 assets, then the number of unique elements in the
covariance, coskewness and cokurtosis is 210, 1540 and 8555, respectively. This is clearly an excessive
number of parameters compared to the number of observations that are available in realistic applica-
tions. As noted by Michaud (1998), the portfolio optimizer acts like an ‘‘error maximizer’’ and ampli-
fies the estimation errors even further when optimizing the portfolio weights and leads to optimized
portfolios that are often not well-diversified (Green and Hollifield, 1992).

In this article, we avoid the curse of dimensionality by assuming that the asset returns are gener-
ated by multifactor model. The total number of unique elements in the covariance, coskewness and
cokurtosis matrix of 20 assets is 83, 112 and 151 for 1, 2 and 3 factors, respectively. The only related
papers are Martellini and Ziemann (2010) recommending to use a single factor model assumption and
Ghalanos et al. (2015) who model the higher order moments of asset returns assuming the returns can
be rewritten as a linear combination of independent factors. Our approach is more general and decom-
poses the return vector into a linear combination of a lower dimensional set of possibly dependent
factors and a vector of residual terms that can be interpreted as independent idiosyncratic factors.

We illustrate the usefulness of the multifactor approach to higher order comoments in an interna-
tional portfolio context where the investor allocates with the purpose to maximize his expected util-
ity. The universe consists of four equity benchmarks, nine bond indices and five commodity indices.
We find that accounting for the higher order moments using a multifactor approach increases out-
of-sample average returns, decreases portfolio standard deviations and leads to an important reduc-
tion in the portfolio downside risk.

In what follows, we first describe in Section 2 the general higher order moment estimation frame-
work that we propose. This includes our key contribution, which is the derivation of the explicit for-
mula for the higher order comoments when the asset returns are generated by a multifactor model. In
Section 3 we then study the out-of-sample performance of portfolios that use these higher order com-
oments. The major findings are summarized in the conclusions.

2. The higher order comoments of the multifactor model and their application in asset allocation

2.1. Asset allocation, higher order comoments and the factor model

Besides the forecasted mean return, the key input parameters for the portfolio decision that we
study are the covariance, coskewness and cokurtosis matrix of the N-dimensional return vector r with
mean lr , i.e. the comoments corresponding to (i) the products of two returns, i.e. the covariance of
assets i and j:

ri;j ¼ E½ðrðiÞ � lrðiÞÞðrðjÞ � lrðjÞÞ�; ð1Þ

(ii) the products of three returns, i.e. the coskewness of assets i; j and k:

/i;j;k ¼ E½ðrðiÞ � lrðiÞÞðrðjÞ � lrðjÞÞðrðkÞ � lrðkÞÞ�; ð2Þ

and (iii) the products of four returns, i.e. the cokurtosis of assets i; j; k and l:

wi;j;k;l ¼ E½ðrðiÞ � lrðiÞÞðrðjÞ � lrðjÞÞðrðkÞ � lrðkÞÞðrðlÞ � lrðlÞÞ�: ð3Þ

It will reveal useful to stack all these comoments into a N � N covariance matrix R;N � N2 coskewness
matrix U and N � N3 cokurtosis matrix W of the return vector r, i.e.:
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