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a b s t r a c t

We propose a new remote sensing image (RSI) fusion technique based on sparse blind source separation
theory. Our method employs feedback sparse component analysis (FSCA), which can extract the original
image in a step-by-step manner and is robust against noise. For RSIs from the China–Brazil Earth Re-
sources Satellite, FSCA can separate useful surface feature information from redundant information and
noise. The FSCA algorithm is therefore used to develop two RSI fusion schemes: one focuses on fusing
high-resolution and multi-spectral images, while the other fuses synthetic aperture radar bands. The
experimental results show that the proposed method can preserve spectral and spatial details of the
source images. For certain evaluation indexes, our method performs better than classical fusion methods.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Remote sensing images (RSIs) with high spectral and spatial
resolutions are essential for the complete and accurate description
of observed scenes. Remote sensing image (RSI) fusion, also called
pansharpening in some field (Alparone et al., 2007), is an effective
technique for integrating the spectral and spatial information from
panchromatic (PAN) and multi-spectral (MS) images (Wald, 1999).
A number of publications have considered the fusion of high-re-
solution PAN images with lower-resolution MS data to obtain
high-resolution MS images (for example, the intensity hue sa-
turation (IHS) (Choi, 2006) color transformation, principle com-
ponent analysis (PCA) (Gonzalez-Audicana et al., 2004), in-
dependent component analysis (ICA) (Chen et al., 2011), multi-
scale transform methods (Pajares and Cruz, 2004; Dong et al.,
2013; Petrovic and Xydeas, 2004), and their combinations (Wang
et al., 2008; González-Audícana et al., 2004; Yu et al., 2012; Shah
and Younan, 2008)). Although these methods have removed some
redundant information and obtained certain fusion results, there
are still disadvantages to each method. IHS transformation and
PCA retain spectral distortion, while ICA must satisfy rigorous in-
dependent and non-Gaussian constraints. In multi-scale transform
fusion algorithms, high-frequency detail information from a PAN
image and spectral information from MS images are fused to

produce high spatial resolution and rich spectral information.
However, in high-frequency regions, there are noise components
in the surface details, even though the PAN image has undergone
denoising. This is equivalent to fusing components of excessively
high frequency. There is thus the potential to improve the spectral
fidelity and spatial resolution of RSI fusion.

Sparse representation (SR) is a powerful signal description tool
derived from the mechanism of human vision (Olshausen and
Field, 1996). Recently, SR has attracted growing interest and has
been applied in many image processing areas, such as image de-
noising (Elad and Aharon, 2006) and image super-resolution (Yang
et al., 2010). Furthermore, SR has come to the attention of scholars
in the field of RSI fusion (Zhu and Bamler, 2013; Li et al., 2013; Pan
et al., 2013). The super-resolution capability and robustness of
sparse reconstruction techniques mean that these methods can be
expected to give higher spatial resolutions with less spectral dis-
tortion than current methods. However, SR methods often need a
large dictionary (fixed or learned) and optimization algorithm,
leading to expensive computation.

Some fusion algorithms based on blind source separation (BSS)
theory have attained satisfactory performance levels (Chen et al.,
2011; Wang et al., 2008; Yu et al., 2012). Sparse component ana-
lysis (SCA) is a promising BSS algorithm based on SR theory, and is
very popular in the signal processing field. In previous research,
we proposed a sparse blind image separation algorithm, called the
feedback SCA (FSCA) algorithm (Yu et al., 2013; Xu et al., 2013).
FSCA can extract sparse components and neglect noise compo-
nents, making it useful for the fusion process. Therefore, in this
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paper, we start from the idea of sparse BSS, extract the sparse
components of RSI using FSCA, and then fuse the components via
certain rules.

2. Sparse BSS algorithm–FSCA algorithm

2.1. BSS model based on SCA

The problem of sparse BSS is illustrated by the model of SCA in
Fig. 1.

The SCA model can be written as a linear matrix model in the
form

  X AS N X A S; ; ; 1m T m n n T= + ∈ ∈ ∈ ( )× × ×

where X are the observations (observed signal matrix), A is the
mixing matrix (mixing character of channels), S is the unknown
signal (matrix of source signals) to recover, and N is the additive
noise matrix. m denotes the number of observations, n denotes the
number of sources, and T denotes the number of samples (pixels).

The SCA approach uses the sparsity of sources to solve the BSS
problem. The sparsity of source signals implies that each column
of S contains just a few significant values (active sources), while
most of the elements are almost zero (inactive sources). The goal
of SCA is then to estimate A and S as accurately as possible, using
only X and the sparsity assumption (Yu et al., 2013).

In the model of SCA, most researchers considered the additive
noise. However, there are other sources of noise participating in
the mixing system. We refer to such noise as mixing noise, and it
has been demonstrated that SCA cannot directly separate the
sources in the presence of mixing noise (Yu et al., 2013). We thus
propose a new sparse BSS algorithm called the FSCA algorithm to
solve the mixing noise problem.

2.2. Anti-mixing-noise sparse BSS algorithm–FSCA algorithm

In the separation process, SCA cannot directly separate all the
sources from the mixing noise (Yu et al., 2013), but it always se-
parates one channel well—this is a surprising result. Therefore, if
we remove this source channel, then the remaining mixture has
one fewer channels, and by repeating the above process, all
sources can be effectively separated.

In previous papers (Yu et al., 2013; Xu et al., 2013), we proposed
the FSCA algorithm for the above problem (of the mixing noise).
The “perfect” separated channel has the minimum mixing element

of all of the separated channels, i.e. it has smaller correlation with
the original mixtures than the other channels. We thus use nor-
malized correlation coefficient (NCC) to select the “perfect” sepa-
rated channel. The NCC is calculated as
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where (i, j) denote the position of the pixel. v i j,( ) and v i j,′( ) are
grayscale values of two images. v̄ and v̄′ are the corresponding
mean pixel values.

A flowchart of FSCA is shown in Fig. 2. First, we output the
“perfect” source channel with S′, and then set this to zero and feed
it back into the system as A SSCA ′ to get the new mixture. Second,
we apply SCA to the new mixture. Repeating the above process
until only the noise is left, we can extract all images.

2.3. Separation test for MS RSIs

Different RSI bands are the responses to electromagnetic waves
incident on the same area, and there are many mixed pixels in
low-resolution RSIs. Therefore, multi-band RSIs (MS images) can
be thought of as observed mixtures. Remote sensing imagery may
suffer interference, such as atmospheric scattering noise and in-
strument noise, and this noise may be additive or multiplicative.
Thus, to test the feasibility of FSCA for real mixing images with
noise, we conduct a separation experiment using an RSI taken by
the China–Brazil Earth Resources Satellite (CBERS) (512×512 pix-
els; Doumen, ZhuHai, China). We use SCA and FSCA to separate B4
(0.77–0.89 μm), B2 (0.52–0.59 μm), and B1 (0.45–0.52 μm). The
results are shown in Fig. 3.

In Fig. 3, the benefit of SCA and FSCA is seen in the removal of a
certain redundancy between MS bands; this is to say, SCA and
FSCA are able to decorrelate signals since the separated results of
SCA and FSCA are more different from each other than the original
bands. FSCA extracts more feature information than SCA, and re-
presents texture features better. For instance, the mountain in the
third panel of Fig. 3(c) is better (clearer) than that in the second
panel of Fig. 3(b). The content remaining after FSCA can be seen as
noise, though it contains some surface information, as seen in
Fig. 3(c).

3. RSI fusion method based on FSCA

Considering the different characteristics of RSIs, we propose
two fusion schemes for high-resolution MS images and synthetic
aperture radar (SAR) bands. First, the fusion rules are introduced.

3.1. Fusion rules

The proposed method uses the following three fusion rules.
Consider the fusion of two images, and suppose they have been
transformed (separated) by a certain function. We have the pre-
pared fusion components s1 and s2, which are fused according to
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Fig. 1. Mixing model of SCA.
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Fig. 2. Flow chart of FSCA.
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