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a b s t r a c t

Physically‐based models of groundwater flow are powerful tools for water resources assessment under
varying hydrologic, climate and human development conditions. One of the most important topics of
investigation is how these conditions will affect the discharge of groundwater to rivers and streams (i.e.
baseflow). Groundwater flow models are based upon discretized solution of mass balance equations, and
contain important hydrogeological parameters that vary in space and cannot be measured. Common
practice is to use least squares regression to estimate parameters and to infer prediction and associated
uncertainty. Nevertheless, the unavoidable uncertainty associated with physically‐based groundwater
models often results in both aleatoric and epistemic model calibration errors, thus violating a key as-
sumption for regression-based parameter estimation and uncertainty quantification. We present a
complementary data-driven modeling and uncertainty quantification (DDM-UQ) framework to improve
predictive accuracy of physically‐based groundwater models and to provide more robust prediction in-
tervals. First, we develop data-driven models (DDMs) based on statistical learning techniques to correct
the bias of the calibrated groundwater model. Second, we characterize the aleatoric component of
groundwater model residual using both parametric and non-parametric distribution estimation meth-
ods. We test the complementary data-driven framework on a real-world case study of the Republican
River Basin, where a regional groundwater flow model was developed to assess the impact of ground-
water pumping for irrigation. Compared to using only the flow model, DDM-UQ provides more accurate
monthly baseflow predictions. In addition, DDM-UQ yields prediction intervals with coverage probability
consistent with validation data. The DDM-UQ framework is computationally efficient and is expected to
be applicable to many geoscience models for which model structural error is not negligible.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Effective water resource management policies and practices
require clear understanding of the interaction between ground
water aquifers and surface-water bodies such as streams and riv-
ers. Of particular interest is baseflow, which represents the net
groundwater discharge to the stream. Accurate quantification of
baseflow is critical when dealing with issues such as water supply
reliability, low flow requirements for in-stream ecology, and water
allocation and trading. Physically‐based models of groundwater
flow are powerful tools to simulate and predict baseflow under
varying hydrologic, climate and human development conditions.

However, predictions made from groundwater models are
subject to error and uncertainty. The inherent error and un-
certainty in groundwater modeling has been widely recognized in

the literature as arising from multiple sources, including structure,
parameter, input data and measurements used to evaluate the
model (Caers, 2011; Dou et al., 1997; Hunt and Welter, 2010; Liu
and Gupta, 2007). As a result, the model simulation is subject to
both aleatoric and epistemic errors that cannot be fully attributed
to measurement error. The model residuals (i.e. the difference
between model simulation and observations) may have complex
statistical characteristics, such as temporal and spatial correlation
and non-normality (Doherty and Welter, 2010; Honti et al., 2013).
Common practice is to use least squares regression to estimate
model parameters and associated uncertainty from historical ob-
servation data; the calibrated model is then used for subsequent
prediction and uncertainty analysis (Doherty et al., 1994; Hill and
Tiedeman, 2007). A fundamental assumption of least squares re-
gression is that model residuals can be described by a noise term
corresponding to measurement error and that the noise term is
uncorrelated and Gaussian distributed. This assumption is often
violated when the groundwater model has significant input and
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structural errors. As a result, simulations made with the calibrated
model could be biased and the resulting predictive uncertainty
intervals may be unreliable (Honti et al., 2013).

The limitation of classic least squares calibration highlights the
need for proper treatment of model residuals in order to reliably
assess predictive uncertainty. Methods have been proposed to
accommodate correlated and/or non-Gaussian residuals of surface
and ground water models, typically relying on an error model.
Correlation in model residuals can be inferred using the first-or-
der-second-moment method (Tiedeman and Green, 2013) or si-
mulated using autoregressive models (Bates and Campbell, 2001;
Kuczera, 1983; Lu et al., 2013). Traditionally, the Gaussianity of
residuals can be improved using power transformations (Bates and
Campbell, 2001; Box and Cox, 1964; Kuczera, 1983). Schoups and
Vrugt (2010) proposed a generalized likelihood function based on
a universal statistical error model to explicitly handle residual
errors that are correlated, heteroscedastic and non-Gaussian. This
and similar approaches have been applied to modeling rainfall-
runoff (Schoups and Vrugt, 2010), unsaturated flow (Erdal et al.,
2012) and groundwater contaminant transport (Shi et al., 2014).
Kennedy and O'Hagan (2001) proposed a generic Bayesian for-
mulation that integrates a Gaussian process error model to char-
acterize predictive uncertainty of numerical simulation models. An
application of this approach in river water quality modeling can be
found in Reichert and Schuwirth (2012).

The error model is sometimes inferred jointly with the para-
meters of one or more hydrologic models having different struc-
tures (Kennedy and O'Hagan, 2001; Reichert and Schuwirth, 2012;
Schoups and Vrugt, 2010). In this way, the joint inference approach
can assess the contribution to predictive uncertainty from para-
meter, model structural, input data and measurement uncertainty.
However, the interactions among different uncertainty sources
pose challenges to the identification of these contributions (Ken-
nedy and O'Hagan, 2001). In addition, the computational cost as-
sociated with joint inference is often high and even infeasible for
complex models having long evaluation time. On the contrary,
postprocessor approaches (Evin et al., 2014) estimate the error
model from the residuals of a single calibrated hydrologic model
(Lu et al., 2013; Pianosi and Raso, 2012; Solomatine and Shrestha,
2009; Weerts et al., 2011). It is assumed that the uncertainties
arising from structural, parametric and data errors are represented
implicitly by the model residuals. As reported in Evin et al. (2014),
a postprocessor method yielded predictive uncertainty estimates
comparable to a joint inference approach in a synthetic case study,
and performed more robustly in a real-world case study. These
findings suggest that postprocessor approaches comprise a com-
putationally efficient alternative for post-calibration predictive
uncertainty analysis. Therefore this study adopts a postprocessor
approach to estimate the error model.

Existing postprocessor methods focus on time series data, and
most of them rely on relatively simple statistical description of the
model residual distribution (Evin et al., 2014; López López et al.,
2014; Pianosi and Raso, 2012; Weerts et al., 2011). The challenge
lies in how to configure the form of the error model to be capable
of characterizing the distribution of complicated spatiotemporal
residual fields of groundwater models. Fortunately, the statistical
characterization of model residuals can be approached from an
inductive, data-driven modeling prospective. Statistical learning
techniques such as artificial neural networks, model trees and
locally weighted regression have been successfully applied to un-
certainty analysis of rainfall-runoff models (Dogulu et al., 2014;
Shrestha and Solomatine, 2006; Solomatine and Shrestha, 2009).
These algorithms do not require explicit assumption about the
residual distribution. Instead, given a set of historical data, they are
able to learn complex relations between the response variable (i.e.
model residual or its quantiles, in the context of error modeling)

and selected input variables. Besides the above mentioned un-
certainty analysis applications, data-driven error models based on
statistical learning techniques have proven effective for bias cor-
rection (also commonly referred to as error correction) of rainfall-
runoff (Abebe and Price, 2003; Goswami et al., 2005) and
groundwater models (Demissie et al., 2009; Gusyev et al., 2013; Xu
et al., 2014).

However, previous groundwater applications of data-driven
error models (Demissie et al., 2009; Gusyev et al., 2013; Xu et al.,
2014) focus on using deterministic statistical learning methods for
bias correction and cannot provide information about prediction
uncertainty. This study fills the gap of integrating advanced sta-
tistical learning techniques into the postprocessor approach to
statistically characterize groundwater model residuals, which are
usually spatiotemporal and substantially more complicated than
time series data. We present a complementary data-driven mod-
eling and uncertainty quantification (DDM-UQ) framework to re-
duce the predictive bias of physically‐based groundwater models
and to provide more robust prediction intervals. First, we develop
data-driven models (DDMs) based on statistical learning techni-
ques to account for the bias of the calibrated groundwater model.
By learning from the historical error of the groundwater model,
the DDMs are capable of correcting its bias when the model is
used for forecasting or extrapolation purposes. Two statistical
learning techniques, random forests and support vector machine,
are used to build the DDMs. Second, we estimate prediction un-
certainty due to the aleatoric component of groundwater model
residuals using both parametric and non-parametric distribution
estimation methods. We then calculate the prediction interval by
imposing the aleatoric error distribution on the DDMs-corrected
prediction of interest. The DDM-UQ framework is tested on
baseflow prediction of a real-world case study of the Republican
River Basin.

The remainder of this paper is organized as follows. Section 2
briefly reviews the statistical learning techniques used in the
DDM-UQ framework. Section 3 introduces the proposed DDM-UQ
framework as well as performance assessment metrics. Next the
DDM-UQ framework is tested on a real-world case study; the data
and application procedures are described in Section 4. The results
are presented and discussed in Section 5. Finally, Section 6 pro-
vides conclusions and recommendations.

2. Overview of statistical learning techniques

This section briefly reviews three statistical learning techniques
used in this study. In contrast to physically-based groundwater
models, statistical learning techniques learn inductively from the
data. Based on a set of training data, a statistical learning algorithm
learns a mapping from the input variables to the output (or re-
sponse) variable that can be generalized to predict on a separate
set of testing data. Cross validation (CV) is the most widely used
tool to assess generalization error for tuning hyperparameters of
statistical learning algorithms (further details are in Sections
2.2 and 2.3). Ten-fold CV is carried out in this study. The training
dataset is randomly partitioned into 10 subsets of approximately
equal size. Every time, a DDM is trained using nine subsets and
tested on the remaining one to assess the generalization error or
testing error. This step is repeated 10 times until every subset has
been used once as testing data. The CV process can be repeated
using varying hyperparameter values; the hyperparameter set that
yields lowest generalization error (averaged over 10 subsets) is
selected. Finally the DDM is retrained using the whole training
data with the selected hyperparameter set.
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