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a b s t r a c t

We test the accuracy and hedging performance of the deltas given
by a range of nonparametric measure changes. The nonparametric
models accurately estimate deltas across a number of asset price
dynamics. The optimal nonparametric measure change displays
superior estimation bias, which depends on how the models cap-
ture the stylised features of the dynamics, moneyness, and time-
to-expiry. Differences in estimation error appear negligible. The
optimal measure change produces superior static hedging out-
comes compared to the Black–Scholes model. Differences in
dynamic hedging outcomes are negligible.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Stutzer (1996) introduces the Canonical nonparametric model for pricing European options, and
Haley and Walker (2010) derive the Euclidean (EU) and Empirical Likelihood (EL) models as alterna-
tive measure changes.

Alcock and Gray (2005) derive the Canonical model deltas and show their accuracy under geomet-
ric Brownian motion. We show across a range of asset price dynamics that various nonparametric
models derived from members of the Cressie and Read (1984) family of divergence functions
accurately estimate European option deltas. The optimal nonparametric measure change displays im-
proved estimation bias over the Stutzer’s (1996) Canonical method, with this bias depending on how
the models capture the stylised features of the dynamics, moneyness and time-to-expiry. Differences
in estimation error between the models appears negligible.
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Alcock and Gray (2005) report superior dynamic hedging outcomes by the Canonical model com-
pared to the Black and Scholes (1973) model under Heston (1993) dynamics. However, when tested
against market data, Gray et al. (2007) report the Canonical model outperforming only for puts, and
Alcock and Smith (2012) report similar outcomes between the nonparametric and Black–Scholes mod-
els, with a naive model that uses constant instead of risk-neutral probabilities often outperforming.
We show across a range of dynamics that the naive model produces superior static but inferior dy-
namic hedging outcomes, the optimal nonparametric measure change produces superior static hedg-
ing outcomes compared to the Black–Scholes model, and differences in hedging outcomes between
the nonparametric and Black–Scholes models vanish for dynamic hedging.

2. The nonparametric pricing formulae

Consider pricing a European option with T years to expiry, strike K and underlying whose value is S.
The nonparametric models value European options in the risk-neutral framework by first estimating a
sample R = (R1, . . . , RN) of asset returns at expiry and assigning it the measure pP ¼ ð1=N; . . . ;1=NÞ.
Second, a risk-neutral measure pQ ¼ pQ

1 ; . . . ;pQ
N

� �
is estimated by minimising a divergence function1

subject to the constraint EQ½R� ¼ erT . Third, for a given pQ, the prices of European options are
C ¼ e�rTPN

n¼1pQ
n ðSRn � KÞþ and P ¼ e�rTPN

n¼1pQ
n ðK � SRnÞþ, where r is the risk-free rate.

The Canonical model of Stutzer (1996) uses the Kullback–Leibler (KL) divergence
KLðpQÞ ¼

PN
n¼1pQ

n logðNpQ
n Þ, whose minimisation yields

pKL
n ¼

expðkKLRne�rTÞPN
n¼1 expðkKLRne�rTÞ

; where kKL ¼min
k2R

XN

n¼1

expðkðRne�rT � 1ÞÞ
( )

:

Haley and Walker (2010) generalise the Canonical (KL) model, noting that the KL divergence is just
one member of the Cressie and Read (1984) family:

CRaðpQÞ ¼ 2
að1þ aÞ

XN

n¼1

1
N

1
NpQ

n

� �a

� 1
� �

; a 2 R:

The limit a ? �1 gives the KL divergence. Haley and Walker (2010) explore the EU (a = �2) and EL
(a ? 0) divergences, given by EUðpQÞ ¼ 1

2N

PN
n¼1ðNpQ

n � 1Þ2 and ELðpQÞ ¼ � 1
N

PN
n¼1 logðNpQ

n Þ, and show
that

pEL
n ¼

1
N

1
1þ kELðRne�rT � 1Þ

; where
1
N

XN

n¼1

Rne�rT � 1
1þ kELðRne�rT � 1Þ

¼ 0;

and pEU
n ¼

1
N
ð1� kEUe�rTðRn � E½R�ÞÞ; where kEU ¼ E½R�e�rT � 1

N�1
N e�2rTVar½R�

:

The EL model prices options the most accurately when R correctly models the asset dynamics (Ha-
ley and Walker, 2010; Alcock and Smith, 2012).

We also investigate the divergences given by a = 1 (Pearson’s v2) and a = 2:
CHIðpQÞ ¼ 1

2N

PN
n¼1 NpQ

n

� ��1 � 1
h i

and CR2ðpQÞ ¼ 1
6N

PN
n¼1 NpQ

n

� ��2 � 1
h i

. We employ an interior-point
scheme to minimise these divergences.

3. The nonparametric delta formulae

The derivation of the KL deltas by Alcock and Gray (2005) are independent of pQ, so
DC ¼ @C

@S ¼ e�rTPN
n¼1pQ

n Rn1fSRn>Kg and DP ¼ @P
@S ¼ �e�rTPN

n¼1pQ
n Rn1fK>SRng for each pQ (1A is the indicator

function of A).

1 Divergence functions quantify the statistical or probabilistic distance between pP and pQ .
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