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a b s t r a c t

We present a robust and autonomous mineral classifier for analyzing igneous rocks. Our study shows

that machine learning methods, specifically artificial neural networks, can be trained using spectral

data acquired by in situ Raman spectroscopy in order to accurately distinguish among key minerals for

characterizing the composition of igneous rocks. These minerals include olivine, quartz, plagioclase,

potassium feldspar, mica, and several pyroxenes. On average, our classifier performed with 83 percent

accuracy. Quartz and olivine, as well as the pyroxenes, were classified with 100 percent accuracy. In

addition to using traditional features such as the location of spectral bands and their shapes, our

automated mineral classifier was able to incorporate fluorescence patterns, which are not as easily

perceived by humans, into its classification scheme. The latter was able to improve the classification

accuracy and is an example of the robustness of our classifier.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The characterization of geological features provides insight into
the history and formation of a site. This process requires the
following: (1) detailed morphological, physical, and compositional
analyses of rocks and sediments within stratigraphic layers, units,
outcrops, and landforms, and (2) the integration of this information
into conceptual models used to unravel a region’s geologic history.
Unfortunately, exploring some geological sites may be difficult or
even dangerous, as in the case of deep-sea hydrothermal vent studies
on Earth, or in the remote exploration of the surface of Mars. As a
result, these kinds of missions would benefit from assistance, or even
full autonomy in the form of robotic explorers capable of performing
onboard scientific analyses.

A key task in characterizing the geology of site is selecting which
rocks and sediments to analyze. Our efforts to facilitate this process
are towards developing technology to serve as a field assistant for
geologists, as well as to equip robotic explorers with the capacity to
perform unassisted compositional analyses of geologic samples.

In this paper, we provide an application of machine-learning
techniques to create an automated classifier to estimate the
presence of key minerals based on in situ Raman spectroscopy.
We demonstrate the robustness of our method by using different

sources of Raman spectral data, both from our own rock and
mineral database, and from a third-party mineral database.

1.1. Raman spectroscopy

Raman spectroscopy provides a quick and non-invasive tech-
nique (Lewis and Edwards, 2001) to determine the mineral
compositions of rocks and sediments. Samples are scanned with
a laser without the need for preparation, such as grinding or
pulverizing. Therefore, this approach enables the ability to ana-
lyze samples as they are found, without moving or altering them.

Raman spectroscopy works by directing a focused monochro-
matic light source at the surface of a mineral causing individual
photons to scatter. Most of the photons will bounce off elastically
with a negligible transfer of energy, a phenomenon known as
Rayleigh scattering. However, a small portion of photons will be
scattered inelastically with a corresponding transfer of energy
between the photon and the mineral surface. The latter is called
Raman scattering and is observed as a shift in wavelength
between the incident light and the scattered light, which is
recorded by a detector. The Raman shift occurs because energy
from the incident photons is transformed into vibrational and
rotational motions of surface molecules. Moreover, this shift in
wavelength reveals important information about the molecular
structure of minerals and it often provides a unique signature of
the material being analyzed (Lewis and Edwards, 2001).
The resulting ‘‘fingerprint’’ spectra enable us to automate the
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process of classifying minerals by using machine learning algo-
rithms that exploit the uniqueness of such signatures.

1.2. The minerals

The presence of certain key minerals reveals important com-
positional information for determining the geologic origin of a
rock. The minerals we used in this study help to discriminate
between felsic and mafic igneous rocks. Mafic igneous rocks
contain higher percentages of the minerals biotite, olivine,
pyroxene, amphibole, and plagioclase feldspar than their felsic
counterparts. Therefore, they are enriched in iron, magnesium,
calcium and sodium, but are lower in silica. In contrast, felsic
igneous rocks contain higher percentages of the minerals quartz,
muscovite, and potassium feldspars and are thus enriched in
silica, aluminum, and potassium.

A single mineral is often a subset of a larger mineral group.
Individual minerals in a group, while different in their exact
structure, may share a common chemical formula. For example,
microcline (KAlSi3O8) is a lower temperature polymorph of

orthoclase; although it has the same chemical formula, it pos-
sesses a different structure. Both are potassium-rich alkali feld-
spars, or K-spars. Minerals in the plagioclase group have a general
chemical formula (Na, Ca)Al1–2Si2–3O8 where the amounts of
aluminum and silicon vary based on which end member (Na or
Ca) is present. These minerals range from a sodium-rich albite
(NaAlSi3O8) through oligoclase, andesine, labradorite, bytownite,
and calcium-rich anorthite (CaAl2Si2O8). A similar relationship
extends to the remaining mineral groups considered in this study.
The shared characteristics among minerals carry over to their
spectral signatures, which in some cases are virtually indistin-
guishable in terms of individual spectra. See for example, micro-
cline versus orthoclase in Fig. 1. Based on this ambiguity, we
would expect poor resolution between certain minerals in our
classifier. Instead, we find that our classifier is able to distinguish
between some minerals despite the remarkable similarities in
their spectra. Fig. 1 illustrates the spectral profiles of all six
mineral groups considered in this study. Each individual curve
represents an average of ten normalized spectral observations of a
mineral specimen from the training set.
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Fig. 1. Typical mineral spectra from our collection used in this study. Each plot was obtained by averaging all spectral observations for each mineral type, normalizing the

spectral intensity values to the range [0,1], and smoothing with a Savitzky–Golay filter. The plots show the Raman bands associated with specific mineral groups as well as

their broader fluorescence bands.
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