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a b s t r a c t

Third-order gradients of the gravitational potential (gravitational curvatures) have already found some
applications in geosciences. Observability of these parameters, describing the Earth's gravitational field in
a more complex way than any other currently available gravitational parameter, such as gravitational
acceleration (first-order gradient) or gravitational (second-order) gradient, is currently discussed by
physicists. Moreover, first designs of observational devices (sensors) have already been proposed. The
spherical harmonic analysis and synthesis are the common tools used by geoscientists to study spectral
properties of various functionals of the Earth's gravitational potential. However, the conventional
spherical harmonic expansions of the gravitational curvatures in the local north-oriented reference
frame have rather complicated forms that depend on the first-, second- and third-order derivatives of the
associated Legendre functions. Moreover, some of these expansions also contain singular terms at the
poles. In this paper, the conventional series are transformed to new simpler and non-singular forms
based on relations between the associated Legendre functions and their derivatives. Numerical experi-
ments demonstrate the applicability and correctness of the new expressions.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Currently available ground, marine, airborne and satellite sen-
sors for Earth's gravity field mapping allow for gravity or grav-
itational acceleration measurements. The relative accuracy of
ground gravity measurements reached the ppb level. However, the
accuracy of measurements performed at moving platforms is sig-
nificantly worse. Moreover, the full signal cannot usually be re-
covered due to extensive data filtering in order to reduce the
observation noise. If the full gravitational acceleration vector is
measured (vector gravimetry), we can recover all components of
the first-order gravitational tensor that consists of three gravita-
tional gradients in a specific coordinate frame. By combining
gravitational acceleration measurements the second-order grav-
itational tensor can be derived. This is basically the observational
principle of the gravity-dedicated satellite mission GOCE (Gravity
field and steady-state Ocean Circulation Explorer), see, e.g., ESA
(1999) and Rummel (2010). Gravitational observables and/or de-
rived pseudo-observables have widely been exploited by geos-
cientists for the purpose of the Earth's gravitational field model-
ling, interpretation and spectral analyses.

In recent years, new sensors for observing a third-order

gravitational tensor have been proposed. The Russian project
Dulkyn (www.dulkyn.ru) aims at developing a system that would
eventually observe third-order directional derivatives of the
gravitational potential (in case of the Earth's gravitational field also
called shortly geopotential) together with their temporal varia-
tions (Balakin et al., 1997). Recently, Rosi et al. (2015) performed
first measurements of the third-order vertical derivatives of the
geopotential at the Earth's surface. The gravity-dedicated satellite
mission called OPTIMA (OPTical Interferometry for global MAss
change detection from space) designed to measure the third-order
derivatives of the geopotential was proposed by Brieden et al.
(2010). Motivated by higher sensitivity of the third-order deriva-
tives of the geopotential to short-wavelength structures of the
Earth's gravitational field (Jacoby and Smilde, 2009), their ex-
ploitation has repeatedly been suggested for geophysical ex-
ploration purposes, see, e.g., Troshkov and Shalaev (1968), Smith
et al. (1998), Fedi and Florio (2001), Thurston et al. (2002), Ab-
delrahman et al. (2003), Hafez et al. (2006), Pajot et al. (2008),
Veryaskin and McRae (2008), Beiki (2010) and Eppelbaum (2011).

These ongoing efforts opened a new chapter in the area of
observability of gravitation (gravity stripped of centrifugal accel-
eration). In geodesy, the third-order derivatives of the geopotential
have been discussed in various contexts. Already Moritz (1967)
investigated parameters of the Earth's gravitational field up to the
third-order gravitational tensor and showed that gravitational
tensors of the order three and higher were independent of sensors'
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orientation. Thus, any instrument capable of observing such
quantities would provide a pure gravitational signal. Rummel
(1986), Rummel et al. (1993), Koop (1993) and Albertella et al.
(2000) used the third-order gravitational tensor for the error
analysis of gradiometric observations. Ardalan and Grafarend
(2001) expanded the normal gravitational potential (generated by
a homogeneous geocentric biaxial ellipsoid) into the Taylor series
up to the third-order geopotential derivatives in analyzing Bruns's
formula. Grafarend (1997) also derived a functional relationship
between curvature and torsion of a plumb-line to second- and
third-order derivatives of the geopotential. Casotto and Fantino
(2009) derived expressions for gravitational tensors up to the third
order in local and global reference frames by tensor analysis. Most
recently, Šprlák and Novák (2015) studied functional relationships
between third-order geopotential derivatives and gravitating mass
density distribution, anomalous gravitational acceleration and the
geopotential.

Spectral properties of the gravitational field based on the third-
order derivatives of the geopotential have also been studied.
Cunningham (1970) derived spherical harmonic series for grav-
itational tensors of an arbitrary order in a geocentric reference
frame. This study was extended by Metris et al. (1999) and Pet-
rovskaya and Vershkov (2010). Computational aspects of the har-
monic synthesis up to the third-order derivatives of Legendre's
functions were discussed by Fantino and Casotto (2009) and Fu-
kushima (2012, 2013). Non-singular expressions for a geomagnetic
vector and gradient tensor fields were also studied by Du et al.
(2015). Expressions for both the spherical harmonic analysis and
synthesis use associated Legendre's functions of the first kind.
Expressions for the third-order derivatives of the geopotential in
spherical coordinates include respective derivatives of the asso-
ciated Legendre functions. Moreover, they include terms depen-
dent on latitude which are singular at both poles.

In this paper recursive expressions for computing values of the
third-order derivatives of the associated Legendre functions are
given. Formulas for spherical harmonic synthesis are modified to
avoid numerical instabilities including singularities at the poles. A
simple analytical structure of the new expressions is particularly
suitable for deriving geopotential coefficients from eventually
available observables as well as for studying spectral properties of
the Earth's gravitational field based on the third-order gradients of
the geopotential. Conventional expansions for the gravitational
curvatures in a local north-oriented reference frame (LNOF) are
transformed on the basis of relations given by Ilk (1983), Pet-
rovskaya and Vershkov (2006) and Eshagh (2008, 2010).

The paper is organized as follows: in Section 2 we formulate
the problem, define differential operators and provide conven-
tional and new non-singular expressions for the series re-
presentation of the components of the third-order gravitational
tensor in LNOF; in Section 3 we provide underlying expressions for
derivatives of the associated Legendre functions and outline de-
rivation of the new non-singular expressions; Section 4 contains
numerical results obtained through computer realizations of the
new formulas that demonstrate their correctness and functionality
at the poles; finally, contributions of the paper are summarized in
Conclusions. We also provide a MATLAB based program for po-
tential users.

2. Formulation of the problem

In the following we define the Earth's disturbing potential T as
a difference of the Earth's gravitational potential reduced for the
gravitational potential of the geocentric homogeneous biaxial el-
lipsoid (such as GRS80, Moritz, 2000). Outside the Earth's masses
(and the reference ellipsoid), the disturbing potential T is a

harmonic function as it satisfies the Laplace–Poisson differential
equation. Thus, it can be represented by a spherical harmonic
series of the form, e.g., Heiskanen and Moritz (1967, Section 2–14):
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In this equation, GM represents the geocentric gravitational con-
stant, a is the radius of a mean geocentric sphere approximating
the Earth, P̄n m, is the fully normalized associated Legendre function
of the first kind of degree n and order m, and C̄n m, and S̄n m, are
respective fully normalized spherical harmonic coefficients. The
disturbing potential T is a function of three coordinates (neglecting
its temporal variability) that define its location in 3-D space: in our
particular case they include geocentric radius r, spherical latitude
φ and longitude λ. As available observations (and numerical lim-
itations) allow for determination only of a finite number of the
spherical harmonic coefficients, the series is truncated at some
maximum degree N (currently at the level of E 2000).

The third-order gravitational tensor is represented by 27
gravitational third-order geopotential gradients (gravitational
curvatures) but only 10 of them are distinct from each other be-
cause of continuity of the Earth's gravitational field. In this paper,
we will consider only gravitational curvatures referred to LNOF.
Such a reference frame is defined by an origin in the point of in-
terest and by a right-handed orthogonal basis with the following
orientation of axes: the x-axis points to the North, the y-axis
points to the West and the z-axis is directed radially outward. Each
of these ten gravitational curvatures is defined by one differential
operator. Such differential operators in terms of the spherical
geocentric coordinates read as follows (Tóth, 2005; Casotto and
Fantino, 2009):
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