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a b s t r a c t

The multiple inverse method is widely used to invert multiple stress tensors from fault-slip data caused

by polyphase tectonics. A practical problem of the method is the time-consuming computation related

to its iterative procedure. This paper describes a way of accelerating the computation by replacing an

exhaustive grid search for the optimal stress tensor by direct calculation using an analytical solution.

Furthermore, a technique to reduce noise in the result was developed based on the estimation of

instabilities of solutions.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Stress tensor inversion methods are widely used to infer
tectonic stress state from fault-slip data. Input fault data are
collected from geological outcrops, seismic focal mechanisms,
rock core samples, and underground images obtained by three-
dimensional seismic surveys. Among the variety of methods the
multiple inverse method (Yamaji, 2000), hereafter abbreviated as
MIM, has an advantage in separating multiple stress tensors from
a mixture of geological faults yielded from spatial or temporal
change of tectonic stress state. This method has been used by
many researchers in various regions (e.g., Yamada and Yamaji,
2002; Yamaji, 2003; Sippel et al., 2009; Chan et al., 2010) and
further methodological improvement is now ongoing. MIM has
been extended to analyze seismic focal mechanisms without a
priori specification of fault planes from paired orthogonal nodal
planes (Otsubo et al., 2008), improved to objectively recognize
multiple solutions by means of clustering techniques (Otsubo and
Yamaji, 2006), and enhanced in its resolution through develop-
ment of uniform computational grid (Sato and Yamaji, 2006b;
Yamaji and Sato, in press).

A fault-slip data set is described as heterogeneous when it
includes faults caused by different stresses. A conventional
method of stress inversion (e.g., Angelier, 1979) determines an
optimal stress tensor for a whole data set, though the solution is
meaningless if the data set is heterogeneous. MIM can detect
multiple stress tensors through an iterative sampling procedure.
When a data set has N faults, MIM extracts a subset including k

faults from it and determines an optimal stress tensor for the
subset by exhaustive grid search. This process is repeated NCk

times for all possible combinations of k-element subsets. A great
number of stress tensors are obtained and their concentrations
are interpreted as desired tectonic stresses (Fig. 1). This iterative
calculation also has an effect of enhancing solutions from natural
noisy fault-slip data.

A problem of MIM lies in its computational cost. It takes
between a few hours and several days to analyze several hundred
to a thousand faults by a personal computer. The cost is propor-
tional to the number of fault subsets NCk, which is order of OðNkÞ

by Landau’s symbol. The number of faults in a subset k is
empirically set to four or five (Yamaji, 2000). Therefore the cost
is OðN4Þ or OðN5Þ. This fact generally limits the total number of
faults N up to a thousand.

Each determination of optimal stress for fault subsets is done
by exhaustive grid search on 60,000 uniformly spaced stress
tensors (Sato and Yamaji, 2006b) by default. This study proposes
a direct algorithm for determination of an optimal stress tensor.
Although the new technique is applicable only to four-element
subsets, it calculates the numerous stress solutions several times
faster than conventional MIM. A method of noise reduction by
estimating instabilities of solutions is also provided.

2. Method

2.1. Wallace–Bott hypothesis

MIM as well as recent stress tensor inversion techniques is
based on an assumption that a fault slips in the direction of shear
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stress, which is called Wallace–Bott hypothesis (Wallace, 1951;
Bott, 1959, illustrated in Fig. 2a). Input data for stress inversion
analysis, called fault-slip data, contain fault plane orientations,
slip orientations, and shear senses, while the unknown para-
meters are described by stress tensors. The direction of shear
stress on a fault plane depends on four of the six independent
components of the stress tensor. Let r, whose components are
denoted by sij (i¼1 to 3, j¼1 to 3), be a reduced stress tensor
with four degrees of freedom. Two normalization conditions
imposed on r can be freely chosen. The first and second invariants
are normalized in this study; i.e.,

J1 ¼ s1þs2þs3 ¼ 0 ð1Þ

and

J2 ¼�s1s2�s2s3�s3s1 ¼ 1, ð2Þ

where s1, s2, and s3 are the principal stress magnitudes
(s1Zs2Zs3, compression is positive). Let n¼ n1,n2,n3ð Þ

T and

v¼ v1,v2,v3ð Þ
T be the unit vectors in the directions of the fault

normal and slip direction, respectively. The superscript T denotes
the transpose of a vector or a matrix. Hereafter all vectors are
column vectors. Cauchy’s formula gives the traction vector
exerted on a fault plane by a stress as t ¼ rn. The shear stress is
derived by projecting t onto the fault plane as s¼ t�nnTt. The
Wallace–Bott hypothesis requires s to be in the same direction as v.

Fry (1999) decomposed the Wallace–Bott condition into

b � t ¼ 0 ð3Þ

and

v � t40, ð4Þ

where the unit vector b¼ n� v is perpendicular to both n and v.
Eq. (3) requires the shear stress vector s to be parallel to the observed
slip direction v, while Eq. (4) represents the correspondence of shear
sense (Fig. 2a). Sato and Yamaji (2006a) introduced the deviatoric
stress space into stress inversion analysis, in which reduced stress
tensors and fault-slip data are represented by five-dimensional unit
vectors (Fig. 2b). They reformulated Eqs. (3) and (4) as

E!
0
� s!¼ 0 ð5Þ

and

E!� s!40, ð6Þ

respectively. The vectors in Eqs. (5) and (6) are defined as
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The normalization conditions of the stress tensor (Eqs. (1) and (2))
and the orthogonality of unit vectors representing fault parameters
(Fig. 2a) imply

s11þs22þs33 ¼ E01þE
0
2þE

0
3 ¼ E1þE2þE3 ¼ 0, ð8Þ

9s!9¼ 9 E!
0

9¼ 9 E!9¼ 1, ð9Þ

Fig. 1. Schematic figure illustrating the procedure of the multiple inverse method

(MIM) of detecting multiple stress tensors from a heterogeneous fault-slip data

set. The data set is a mixture of black and white f symbols representing faults

activated by different stresses A and B, respectively. MIM extracts subsets of four

or five faults from whole data and determines optimal solutions for them by

means of exhaustive grid search on the deviatoric stress space (Sato and Yamaji,

2006b), which is geometrically the surface of a five-dimensional unit sphere.

Homogeneous subsets are expected to concentrate their votes at the grid points

corresponding to stresses A or B, while the meaningless solutions from hetero-

geneous subsets should be placed randomly.

Fig. 2. Wallace–Bott hypothesis as the principle of stress tensor inversion. The slip

direction of a fault is assumed to coincide with the shear stress direction exerted by

the tectonic stress in question. (a) In the physical space, observable fault parameters

are represented by unit vectors v, b, and n. A correct stress tensor gives shear stress

vector s, which is the projection of traction vector t onto fault plane, in the direction

of slip v. (b) Schematic figure of deviatoric stress space. The Wallace–Bott hypothesis

is geometrically expressed as the constraint on the stress tensor represented by s!

from a fault-slip datum. The fault parameters E! and E!
0

specify a half great circle

called the Fry arc (bold line) on which the s! vector is required to lie.

Fig. 3. Schematic figure illustrating how to calculate the direct solution of stress

tensor inversion. When we have four fault-slip data, four E!
0

vectors are specified

in the five-dimensional deviatoric stress space. The parallel conditions between

fault-slip directions and shear stress vectors require the s! vector representing the

stress tensor to be perpendicular to all four E!
0

vectors. The analytical solution to

this even-determined problem can be uniquely obtained as the direction of the

five-dimensional cross product of E!
0

vectors. Note that four E!
0

vectors must be

linearly independent in the five-dimensional space, although this schematic figure

looks as if they were two-dimensionally coplanar owing to lack of dimension. The

white circle spanned by them represents not a two-dimensional circle but a four-

dimensional space.
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