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a b s t r a c t

Categorical data cannot be interpolated directly because they are outcomes of discrete random

variables. Thus, types of categorical variables are transformed into indicator functions that can be

handled by interpolation methods. Interpolated indicator values are then backtransformed to the

original types of categorical variables. However, aspects such as variability and uncertainty of

interpolated values of categorical data have never been considered. In this paper we show that the

interpolation variance can be used to map an uncertainty zone around boundaries between types of

categorical variables. Moreover, it is shown that the interpolation variance is a component of the total

variance of the categorical variables, as measured by the coefficient of unalikeability.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Collecting field samples at certain locations, and then using the
information gathered in a field campaign to produce maps
showing the spatial distribution of analyzed variables is a com-
mon procedure in Earth sciences. Quite often the nature of the
variables being analyzed is categorical. For example, a soil survey
usually comprises the collection of soil samples and the assign-
ment of soil types to the samples. In this case, soil types are
categorical variables or, in statistical terms, discrete random
variables.

In order to produce maps based on categorical variables it is
necessary to interpolate values for unsampled locations in
between collection points. Even when we code categorical data
as numbers, varying from 1 to the number of categories or types,
we cannot use this information to interpolate a value for
unsampled locations. This problem requires coding available
information as indicator functions that can be interpolated and
backtransformed to the original types of categorical variables

(Koike and Matsuda, 2005; Teng and Koike, 2007; Leuangthong
et al., 2008).

After transforming categorical data into indicator functions,
the indicator kriging approach (Journel, 1983) can be used to
estimate values for unsampled locations. This approach requires
calculating and modeling a number of experimental semivario-
grams equal to the number of types of categorical variables
(Leuangthong et al., 2008). However, when there are types of
variables presenting low proportions this approach is almost
impossible in practical terms. The indicator semivariograms in
these cases are based on a few possible pairs and they might
present statistical fluctuations.

Furthermore, after the interpolation and the generation of maps
showing the distribution of the categorical types, the uncertainty
zones that represent the boundaries between adjacent zones of
different categorical types need to be properly established. This is
usually done by defining buffer zones. However, these buffer zones
are defined arbitrarily, using a constant or a variable distance, in a
procedure known in geographic information systems (GIS) as
‘‘proximity analysis’’ (Star and Estes, 1990).

In this paper we propose the use of multiquadric equations
(Hardy, 1971) that do not depend on semivariogram models.
Thus, indicator functions will be interpolated for unsampled
locations using multiquadric equations. Interpolated indicator
values are backtransformed into original and mutually exclusive
types of categorical variables (Teng and Koike, 2007). In this way
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we are able to produce a map of interpolated types of the
categorical variable. There is an uncertainty zone around these
boundaries because the resulting interpolated map is based on
sample data points. We propose the use of the interpolation
variance (Yamamoto, 2000) for types of categorical variables for
mapping uncertainty for the transition zones between interpo-
lated types. By incorporating this concept into the resulting map
the limitations of using arbitrary zones that result from spatial
buffering can be overcome.

2. Mapping an uncertainty zone between interpolated types
of a categorical variable

2.1. Categorical variables

Categorical variables come from observations in which certain
qualitative characteristics are recognized such as color, texture,
and pattern. Variables measured on a nominal scale (Stevens,
1946) and on ordinal scale (Stevens, 1946) are called categorical
variables. Ordinal scales assign numbers representing the rank
order of certain characteristics (Stevens, 1946). For example,
sediments can be described as fine, medium, and coarse, depend-
ing on the grain size. Variables measured on an ordinal scale can
be analyzed as categorical variables as well.

Outcomes of discrete random variables cannot be combined
directly to give the values at unsampled locations. However, some
functions of these categorical variables can be used to estimate
linearly the value at a given location or domain (Rivoirard, 1994).
These functions, known as indicator functions, are used to
indicate a type present within a categorical variable.

2.2. The indicator function

Given a categorical variable with K types, the indicator func-
tion for the kth type is defined as

Iðxi; kÞ ¼
1 if type k is present at location xi

0 if type k is not present at location xi
:

(
ð1Þ

The indicator variable is also known as an all-or-nothing
variable (Journel and Huijbregts, 1978), because within K types
of a categorical variable just one type k will have a value equal to
one and all other equal to zero.

The mean of the indicator variable can be calculated as

E Iðx; kÞ
� �

¼
f k

N
¼ pk, ð2Þ

where pk is the proportion of type k and N¼
P

kf k is the total
number within the domain.

The variance of the indicator variable is

Var½Iðx; kÞ� ¼ E½I2
ðx; kÞ��ðE½Iðx; kÞ�Þ2 ¼ pk�p2

k ¼ pkð1�pkÞ: ð3Þ

Note that E½I2
ðx; kÞ� ¼ E½Iðx; kÞ�. The variance is therefore the

proportion of type k times the proportion of types different to k.
A single indicator variable that has two possible outcomes, one

or zero, follows the Bernoulli distribution (Kader and Perry, 2007).
Let p1 be the proportion of ones and p2 the proportion of zeroes
then we have the mean equal to p1 and the variance equal to p1p2

(Kader and Perry, 2007).
When we have K types within a categorical variable, then we

have K indicator variables that follow a categorical distribution as
a generalization of the Bernoulli distribution. Since indicator
variables are mutually exclusive and exhaustive

PK
k iðx; kÞ ¼ 1

(Leuangthong et al., 2008) the categorical distribution is a special
case of the multinomial distribution.

In expression (3) we can calculate the variance for kth
indicator function. The global variance for all K types is given by
the coefficient of unalikeability proposed by Kader and Perry
(2007)

m2 ¼
XK

k
pkð1�pkÞ: ð4Þ

According to Kader and Perry (2007), the coefficient of unali-
keability gives the proportion of possible comparisons that are
unalike.

Now K indicator variables replace a categorical variable with
K types. Indicator variables can be combined linearly to obtain
estimated values at unsampled locations.

2.3. Indicator kriging

Indicator kriging is the most common interpolator to estimate
every category type k at an unsampled location xo as follows:

inIK ðxo; kÞ ¼
Xn

i ¼ 1

liiðxi; kÞ: ð5Þ

For example, if k¼A it means that we are estimating the
probability that the category type is A at location xo

inIK ðxo; kÞ ¼ Pðxo; k¼ AÞ:

We can also calculate the uncertainty associated with the
indicator kriging estimate (4) as

s2
oðxo; kÞ ¼

Xn

i ¼ 1

li½iðxi; kÞ�inIK ðxo; kÞ�
2: ð6Þ

This is none other than the interpolation variance proposed by
Yamamoto (2000). Rewriting this expression we obtain

s2
oðxo; kÞ ¼

Xn

i ¼ 1

lii
2
ðxi; kÞ�ði

n

IK ðxo; kÞÞ
2:

Since
Pn

i ¼ 1 lii
2
ðxi; kÞ ¼

Pn
i ¼ 1 liiðxi; kÞ the interpolation var-

iance can be written as

s2
o ¼ inIK ðxo; kÞ�ði

n

IK ðxo; kÞÞ
2
¼ inIK ðxo; kÞð1�inIK ðxo; kÞÞ:

For example, for k¼A the interpolation variance is

s2
oðxo; k¼ AÞ ¼ Pðxo; k¼ AÞPðxo; kaAÞ, ð7Þ

and, therefore, the variance is equal to the product of probabilities
that the category type at location xo is A and that the category
type is different than A.

The indicator kriging approach requires K indicator semivar-
iogram models (Leuangthong et al., 2008). This is very difficult
because some types can present just few data points and conse-
quently few pairs presenting large statistical fluctuations. Thus,
instead of indicator kriging we can apply multiquadric equations
for interpolation of indicator variables at unsampled locations.

Fig. 1. Exhaustive data set showing a categorical variable with 5 types.
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