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In one-shot games, an analyst who knows the best response correspondence can only make 
limited inferences about the players’ payoffs. In repeated games with full monitoring, this is 
not true: we show that, under a weak condition, if the game is repeated sufficiently many 
times and players are sufficiently patient, the best response correspondence completely 
determines the payoffs (up to positive affine transformations).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

How much can one infer about players’ payoffs in a game based only on their best response correspondences? In static 
games, such inferences are quite limited; while best responses convey some information about a player’s preferences over 
her own actions for any given profile of the other players’ actions, they say nothing about that player’s preferences as the 
others’ actions vary. Among other things, this makes welfare comparisons essentially impossible: one can show that for any 
profile of best response correspondences and any action profile a in a finite game, there exist payoffs according to which 
a is Pareto efficient, and payoffs according to which a is Pareto dominated, both of which lead to the given best response 
correspondences.

In repeated games with full monitoring, one can potentially infer much more. To the extent that other players’ future 
actions depend on one’s own current action, best responses convey information about preferences over others’ actions. 
We show that this can be enough to fully identify payoffs (up to positive affine transformations). More precisely, as long 
as no player has an action ensuring that—regardless of others’ actions—she obtains her highest possible payoff, the best 
response correspondences uniquely determine the payoffs when the game is repeated sufficiently many times and players 
are sufficiently patient.1

To illustrate, consider the 2 × 2 stage game depicted in Fig. 1. First suppose this game is played once, and the best 
response correspondence for the row player is such that T is a best response if and only if the probability p that the 
column player assigns to L is at least p∗ ∈ (0, 1), while B is best response if and only p ≤ p∗ . What can we infer about the 
payoffs? First, a > c and d > b. Without loss of generality, through an appropriate positive affine transformation, we may 
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Fig. 1. A simple 2 × 2 game. Payoffs are for the row player. The matrix on the right illustrates the extent to which payoffs can be identified if the game is 
not repeated.
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Fig. 2. Two games with the same best response correspondence for the row player (when the game is not repeated).

normalize a and c to be 1 and 0, respectively. Second, given this normalization, the row player’s indifference between T
and B when the column player chooses p = p∗ implies that d − b = p∗/(1 − p∗). These conditions determine payoffs up to 
a constant parameter capturing the row player’s preferences across the two columns, and capture all that can be inferred 
from best responses. In particular, there is a continuum of distinct games having this best response correspondence.

Now suppose the game is played twice without discounting. Consider the row player’s best responses to strategies that 
play L in the first period, followed by L in the second period if the row player played T in the first period, and a mixture 
assigning probability p to L and 1 − p to R otherwise. Suppose we observe that the row player is indifferent between T
and B in the first period when the column player uses this strategy with p = p∗∗ . If p∗∗ > p∗ , then T is the best response 
for the row player in the second period regardless of her first-period action. Hence the indifference condition is

1 + 1 = 0 + p∗∗ + (1 − p∗∗)θ,

from which we obtain θ = (2 − p∗∗)/(1 − p∗∗). Thus we can pin down the exact payoffs. This approach succeeds whenever 
θ > (2 − p∗)/(1 − p∗), ensuring that p∗∗ is indeed greater than p∗ .

By varying the column player’s strategy and checking for indifferences for the row player between her first-period ac-
tions, one can identify θ in this way regardless of its value. More generally, however, if there is no strategy for the column 
player that makes the row player indifferent in the one-shot game, then more periods may be needed. For example, if in the 
game depicted in Fig. 1 we have a = 1, b = 3/2, c = 0, and d = 1/2, then three periods are needed; with only two periods, 
varying the column player’s action in the second period does not provide a strong enough incentive for the row player ever 
to prefer B in the first period. In general, although the number of repetitions needed depends on the payoffs, one can see 
from the best responses whether the payoffs can be identified.

This example is relatively simple, in part because the row player’s payoffs can be identified in the static game up to the 
addition of a constant to each outcome in one column. In general, this may not be possible, as Fig. 2 indicates: the row 
player’s set of best responses to any mixed strategy of the column player is identical in the two games depicted in the 
figure, but neither game can be obtained from the other by adding constants to columns.2

A number of papers have examined the testable restrictions of equilibrium notions in certain classes of games with 
various assumptions about what is observable to the analyst (Bossert and Sprumont, 2013; Chambers et al., 2010; Ledyard, 
1986; Ray and Zhou, 2001; Ray and Snyder, 2013; Sprumont, 2000). We depart from this line of work in several respects. 
First, we take the game form as fixed and focus on identification rather than testable restrictions. Second, we do not assume 
that only equilibrium play is observable.3 Experimental evidence suggests that subjects are often rational in the sense that 
they maximize expected utility with respect to some belief, but do not form correct beliefs about others’ strategies (see, 
e.g., Costa-Gomes and Crawford, 2006, Kneeland, 2015). In this case, although players may not play Nash equilibrium, best 
responses can be observed if beliefs are elicited (as in Nyarko and Schotter, 2002) or determined by experimental design 
(as in Agranov et al., 2012). Although the assumption that the analyst can observe the full best response correspondence is 
quite strong, as we discuss below, our results require only knowledge of best responses to a small class of strategies. We 
do, however, require that the analyst know the extensive form structure of the game (in particular, that payoffs are constant 
across repetitions of the stage game).

Our work can be viewed as a strategic analogue of the classical problem of identifying preferences based on choices from 
menus (see, e.g., Arrow, 1959). In the classical model, if the set of menus is rich enough, one-shot choices are sufficient to 
fully identify preferences. The strategic structure of our setting effectively limits the kinds of menus from which the agent 
can choose, in which case making future menus contingent on the agent’s choice can help to recover more information 
about preferences.

2 Morris and Ui (2004) discuss a similar example.
3 Abito (2015) studies partial identification of payoffs in repeated games based on equilibrium play. Nishimura (2014) considers the testable implications 

of individual rationality in extensive games when other players may not be rational.
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