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This paper studies imitative dynamics for games with continuous strategy space. We 
define imitative dynamics—which include the replicator dynamic as a special case—as 
evolutionary dynamics that satisfy the imitative property and payoff monotonicity. Our 
definition of payoff monotonicity, which we use Radon–Nikodym derivatives to define, is 
weaker than the one proposed in Oechssler and Riedel (2002). We find that Oechssler 
and Riedel (2002)’s definition is too strong, and our definition is more adequate than 
theirs. We show that for a broad class of payoff functional dynamics, payoff monotonicity 
à la Oechssler and Riedel (2002) is equivalent to aggregate monotonicity in the sense of 
Samuelson and Zhang (1992). We then provide sufficient conditions for imitative dynamics 
and general evolutionary dynamics to be well-defined. Finally, with our definition of payoff 
monotonicity, a number of results that are standard for finite games extend to the case of 
games with continuous strategy space.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

There are recent studies of evolutionary dynamics for games with continuous strategy sets. The replicator dynamic, 
which is the best known evolutionary dynamic, has been studied by Bomze (1990, 1991), Oechssler and Riedel (2001, 
2002), Cressman (2005), Cressman and Hofbauer (2005), and Cressman et al. (2006). Other evolutionary dynamics have also 
been studied. For example, the BNN dynamic has been studied by Hofbauer et al. (2009), pairwise comparison dynamics 
have been studied by Cheung (2014), and logit dynamics have been studied by Lahkar and Riedel (2015).

In this paper, we introduce a class of dynamics which generalize the replicator dynamic for games with continuous 
strategy space. We call them imitative dynamics. In the finite strategy case, a number of authors have introduced classes of 
imitative dynamics that generalize the replicator dynamic, for example, Nachbar (1990), Friedman (1991), Samuelson and 
Zhang (1992), Björnerstedt and Weibull (1996), Weibull (1995), Hofbauer (1995), and Ritzberger and Weibull (1995). Our 
generalization in the continuous strategy setting corresponds to payoff monotonic dynamics (cf. Weibull, 1995, Definition 4.2)1

from the finite strategy setting.
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1 The payoff monotonicity condition in the finite strategy setting has appeared in many places under different names, e.g., relative monotonicity in 

Nachbar (1990), order compatibility of predynamics in Friedman (1991), monotonicity in Samuelson and Zhang (1992), and monotone percentage growth rates
in Sandholm (2010).
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We define imitative dynamics as evolutionary dynamics that satisfy the imitative property2 and payoff monotonicity, which 
requires that strategies with higher payoffs have higher growth rates. Under this definition, the replicator dynamic is a 
special case of imitative dynamics.

Our definition of payoff monotonicity is different from the one proposed in Oechssler and Riedel (2002). Under their 
definition, a dynamic is payoff monotonic if sets of strategies with higher average payoffs have higher average growth rates. 
Our definition instead concerns the growth rate of each individual strategy by using Radon–Nikodym derivatives. We find 
that Oechssler and Riedel (2002)’s definition is not satisfactory since it is too strong and rules out certain basic examples 
whose finite strategy counterparts satisfy payoff monotonicity for the finite strategy case (see Example 3). The reason 
behind is that their condition is an “averaging” condition. We show that for a broad class of payoff functional dynamics, 
payoff monotonicity à la Oechssler and Riedel (2002) is equivalent to aggregate monotonicity in the sense of Samuelson and 
Zhang (1992).

We then study conditions under which a general evolutionary dynamic is well-defined, i.e., solutions for the dynamic 
exist and are unique. We find that the condition in Theorem 1 of Cheung (2014), which is sufficient for a pairwise compar-
ison dynamic to be well-defined, is also sufficient for an imitative dynamic to be well-defined. Moreover, the condition is 
sufficient for any general evolutionary dynamic that is derived from the mean dynamic to be well-defined, no matter the 
dynamic is imitative or direct.

Finally, we show that with our definition of payoff monotonicity, a number of results that are standard for finite games 
extend to the case of games with continuous strategy space. For any imitative dynamic, positive correlation is satisfied, 
the rest points coincide with the restricted equilibria,3 and Lyapunov stability implies Nash equilibrium (Propositions 1–3). 
Combining these results with the results in Cheung (2014), we obtain global convergence and local stability results for 
imitative dynamics in potential games.

2. Settings

2.1. Population games

Let S be a compact metric space with metric d. Our main interest is in cases where S is a continuum, for instance 
a compact convex set of Rn . But since we only require compactness, S may also be a finite set, or a union of finite and 
continuous sets. Thus our results here generalize standard results for the finite strategy case from the literature.

Consider a unit mass of agents, each of whom chooses a pure strategy from S . Let B be the Borel σ -algebra on S . 
Denote by M+

1 (S) the space of probability measures on (S, B), and by M(S) the space of finite signed measures. Then 
M(S) is a vector space and is the linear span of M+

1 (S). A population state is a distribution over strategies and is described 
by a probability measure μ ∈M+

1 (S).
We identify a population game with a map

F : M+
1 (S) → Cb(S)

that is continuous with respect to the weak topology, where Cb(S) is the space of continuous (and hence bounded) functions 
on S with the supremum norm. The weak topology is related to weak convergence of measures. A sequence of measures 
μn ∈ M(S) converges weakly to μ ∈ M(S), written μn

w−→ μ, if 
∫
S f dμn → ∫

S f dμ for all f ∈ Cb(S). The weak topology 
on M(S) is the coarsest topology (i.e., the topology with the fewest open sets) on M(S) such that μ �→ ∫

S f dμ is 
continuous for all f ∈ Cb(S).4 A map F : M+

1 (S) → Cb(S) is continuous with respect to the weak topology if F (μn) →
F (μ) (in the supremum norm) for any sequence {μn} ⊆ M+

1 (S) such that μn
w−→ μ. We may call such a map F weakly 

continuous.5

We denote by Fx(μ) the payoff of pure strategy x ∈ S at population state μ ∈ M+
1 (S), and F (μ) specifies payoffs at all 

strategies in S at state μ. We call F (μ) the payoff profile at state μ. The population-weighted average payoff (or the aggregate 
payoff ) obtained by the unit mass of agents at state μ ∈ M+

1 (S) is

F̄ (μ) =
∫

S

Fx(μ)μ(dx).

2 A dynamic is imitative, in contrast to direct (or innovative), means that under the dynamic, when an agent receives an opportunity to switch strategies, 
he chooses a candidate strategy at random according to the distribution of strategies in the population. This is usually interpreted as that the revising agent 
randomly chooses an opponent from the population and imitates the opponent with a probability depending on the revision protocol.

3 A restricted equilibrium of a population game is a Nash equilibrium of the game in which only strategies in the support of the restricted equilibrium 
can be played. In particular, all Nash equilibria are restricted equilibria.

4 See, e.g., Ekeland and Témam, 1999, pp. 6.
5 A common example of a population game is one generated by pairwise matching, i.e., F is defined by Fx(μ) := ∫

S h(x, y) μ(dy) for μ ∈ M+
1 (S) and 

x ∈ S , where h : S ×S →R is the single match payoff function. If h is continuous (and hence bounded), then F is a weakly continuous map from M+
1 (S)

to Cb(S) and so F : M+
1 (S) → Cb(S) defines a population game.



Download English Version:

https://daneshyari.com/en/article/5071524

Download Persian Version:

https://daneshyari.com/article/5071524

Daneshyari.com

https://daneshyari.com/en/article/5071524
https://daneshyari.com/article/5071524
https://daneshyari.com

