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In the early 1950s Lloyd Shapley proposed an ordinal and set-valued solution concept for 
zero-sum games called weak saddle. We show that all weak saddles of a given zero-sum 
game are interchangeable and equivalent. As a consequence, every such game possesses a 
unique set-based value.
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1. Introduction

One of the earliest solution concepts considered in game theory are saddle points, combinations of actions such that 
no player can gain by deviating (see, e.g., von Neumann and Morgenstern, 1947). In two-player zero-sum games, every 
saddle point happens to coincide with the optimal outcome both players can guarantee in the worst case and thus enjoys a 
very strong normative foundation. Unfortunately, however, saddle points are not guaranteed to exist. This situation can be 
rectified by the introduction of mixed—i.e., randomized—strategies, as first proposed by Borel (1921). Von Neumann (1928)
proved that every zero-sum game contains a mixed saddle point, or equilibrium. While equilibria need not be unique, they 
maintain two appealing properties of saddle points: interchangeability (any combination of equilibrium strategies for either 
player forms an equilibrium) and equivalence (all equilibria yield the same expected payoff).

Mixed equilibria have been criticized for resting on demanding epistemic assumptions such as the expected utility axioms 
by von Neumann and Morgenstern (1947). See, for example, Luce and Raiffa (1957, pp. 74–76) and Fishburn (1978). As 
Aumann puts it: “When randomized strategies are used in a strategic game, payoff must be replaced by expected payoff. 
Since the game is played only once, the law of large numbers does not apply, so it is not clear why a player would be 
interested specifically in the mathematical expectation of his payoff” (Aumann, 1987, p. 63).

Shapley (1953a, 1953b) showed that the existence of saddle points can also be guaranteed by moving to minimal sets of 
actions rather than randomizations over them.1 Shapley defines a generalized saddle point (GSP) to be a tuple of subsets of 
actions for each player that satisfies a simple external stability condition: Every action not contained in a player’s subset is 
dominated by some action in the set, given that the other player chooses actions from his set. A GSP is minimal if it does 
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1 The main results of the 1953 reports later reappeared in revised form (Shapley, 1964).
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A1 =

⎛
⎜⎜⎝

2 1 0 1 2
0 3 4 4 1
0 2 2 1 2
2 1 0 2 1

⎞
⎟⎟⎠ A2 =

⎛
⎝

0 0 0
0 1 −1
0 −1 1

⎞
⎠ A3 =

⎛
⎜⎜⎜⎝

2 2 1 3 2
2 4 0 0 2
1 3 3 4 1
2 3 1 3 2
1 0 2 2 0

⎞
⎟⎟⎟⎠

Fig. 1. Three example zero-sum games. For each game, the rows and columns are labeled r1, r2, . . . and c1, c2, . . ., respectively. The game A1 contains one 
weak saddle: {r1, r2} × {c1, c2, c3}. The game A2 contains a saddle point {r1} × {c1}. This saddle point is the unique pure Nash equilibrium and the unique 
weak saddle of this game. Moreover, ( 1

2 r2 + 1
2 r3, 12 c2 + 1

2 c3) is a (mixed) Nash equilibrium of A2. The game A3 contains four weak saddles: {r1, r3} ×{c1, c3}, 
{r1, r3} × {c3, c5}, {r3, r4} × {c1, c3}, and {r3, r4} × {c3, c5}. For all three games, the product of all rows and all columns is the unique strict saddle.

not contain another GSP. Minimal GSPs, which Shapley calls saddles, also satisfy internal stability in the sense that no two 
actions within a set dominate each other, given that the other player chooses actions from his set. While Shapley was the 
first to conceive GSPs, he was not the only one. Apparently unaware of Shapley’s work, Samuelson (1992) uses the very 
related concept of a consistent pair to point out epistemic inconsistencies in the concept of iterated weak dominance. Also, 
weakly admissible sets as defined by McKelvey and Ordeshook (1976) in the context of spatial voting games and the minimal 
covering set as defined by Dutta (1988) in the context of majority tournaments are GSPs (Duggan and Le Breton, 1996a).2

In this paper, we consider GSPs with respect to weak dominance. An action weakly dominates another action if it always 
yields at least as much utility. Shapley (1964, p. 10) notes that no general uniqueness result is available for this type of 
saddle. Later, uniqueness has been shown for restricted classes of zero-sum games, namely tournament games (Dutta, 1988)
and confrontation games (Duggan and Le Breton, 1996a). We show that all weak saddles of a given zero-sum game are 
interchangeable and equivalent. This implies the above-mentioned uniqueness results and shows that every zero-sum game 
possesses a unique set-based value. Our result can be interpreted as an ordinal variant of the minimax theorem.

2. Preliminaries

A finite two-player zero-sum game is given by a matrix A = (ai, j)i∈R, j∈C . The finite set R of rows represents the row 
player’s actions, and the finite set C of columns represents the column player’s actions. If the row player chooses action 
r ∈ R , and the column player chooses action c ∈ C , then the payoff (or utility) of the row player is given by the entry ar,c
of the matrix, while the payoff of the column player is given by −ar,c . For nonempty subsets R ′ ⊆ R and C ′ ⊆ C , A|R ′×C ′
denotes the subgame in which the row player has action set R ′ and the column player has action set C ′ .

An action r1 ∈ R weakly dominates another action r2 ∈ R with respect to a set C ′ ⊆ C of columns, denoted r1 ≥C ′ r2, if 
ar1,c ≥ ar2,c for all c ∈ C ′ .3 Similarly, an action c1 ∈ C weakly dominates another action c2 ∈ C with respect to a set R ′ ⊆ R of 
rows, denoted c1 ≤R ′ c2, if −ar,c1 ≥ −ar,c2 (and thus ar,c1 ≤ ar,c2 ) for all r ∈ R ′ . Strict dominance is defined analogously, with 
the weak inequalities replaced by strict inequalities.

Dominance relations can be extended to sets of actions as follows. A set R1 of rows weakly (resp. strictly) dominates a 
set R2 of rows with respect to C ′ ⊆ C if for every row r2 ∈ R2, there exists a row r1 ∈ R1 such that r1 weakly (resp. strictly) 
dominates r2 with respect to C ′ . We denote this by R1 ≥C ′ R2 (resp. R1 >C ′ R2). Dominance between sets of columns is 
defined analogously, and denoted C1 ≤R ′ C2 (for weak dominance) and C1 <R ′ C2 (for strict dominance).

We are now prepared to define saddles, which are based on the notion of a generalized saddle point (GSP) (Shapley 1953a, 
1953b, 1964). Given a subset R ′ ⊆ R of rows and a subset C ′ ⊆ C of columns, the product R ′ ×C ′ is a weak GSP if R ′ ≥C ′ R\R ′
and C ′ ≤R ′ C\C ′ . Furthermore, the product R ′ × C ′ is a weak saddle if it is a weak GSP and no proper subset of it is a weak 
GSP.4 Strict GSPs and strict saddles are defined analogously.

In contrast to strict saddles, weak saddles are extensions of saddle points in the sense that every saddle point constitutes 
a weak saddle. Since the product R × C containing all actions is a trivial weak and strict GSP of any game, weak and strict 
saddles are guaranteed to exist. While strict saddles have been shown to be unique in zero-sum games (see Corollary 3), 
this is not the case for weak saddles. It is noteworthy that saddles generally cannot be found by the iterated elimination of 
(weakly or strictly) dominated actions.5 See Fig. 1 for examples.

3. The result

In this section, we prove that weak saddles in zero-sum games are interchangeable and equivalent. We begin with a 
lemma.

2 GSPs have also been considered in the context of general normal-form games (see, e.g., Duggan and Le Breton, 1996b; Brandt et al., 2009, 2011; Brandt 
and Brill, 2012).

3 What we call weak dominance here is sometimes also called very weak dominance (see, e.g., Leyton-Brown and Shoham, 2008).
4 Weak saddles have been called very weak saddles by Brandt et al. (2011); see also Footnote 3. In some papers (e.g., Duggan and Le Breton 1996a, 

2001; Brandt et al., 2009, 2011), the dominance used for weak saddles requires at least one strict inequality. In the context of confrontation games (see 
Corollary 4), where weak saddles have usually been considered, both notions of weak saddles coincide. Shapley (1953a, 1953b, 1964) defines weak saddles 
as we do here. It is easily seen that our theorem does not hold for weak saddles that require at least one strict inequality (see, for example, the restriction 
to the first two rows and columns of game A2 in Fig. 1).

5 While the subgames generated by iteratively eliminating dominated strategies are GSPs, these GSPs need not be minimal.
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