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We provide near-optimal, polynomial-time algorithms for pricing n items to optimize rev-
enue against a unit-demand buyer whose values are independent from known distribu-
tions. For any chosen ε > 0 and values in [0, 1], our algorithm’s revenue is optimal up 
to an additive ε. For values sampled from monotone hazard rate (MHR) or regular dis-
tributions, we achieve a (1 − ε)-fraction of the optimal revenue in polynomial time and 
quasi-polynomial time, respectively.
Our algorithm for bounded distributions applies probabilistic techniques to understand 
the statistical properties of revenue distributions, obtaining a reduction in the algorithm’s 
search space via dynamic programming. Adapting this approach to MHR and regular dis-
tributions requires the proof of novel extreme-value theorems for such distributions. As a 
byproduct, we show that, for all n, a constant or a polylogarithmic (in n) number of distinct 
prices suffice for near-optimal revenue for MHR and regular distributions, respectively.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We study the following pricing problem. A seller has n items to sell to a buyer who is looking to buy a single item. The 
seller wants to maximize profit from the sale, leveraging stochastic knowledge she has about the buyer to achieve this goal. 
In particular, we assume that the seller has access to a distribution F from which the values (v1, . . . , vn) of the buyer for 
the items are drawn. Given this information, the seller wants to compute prices p1, . . . , pn for the items to maximize her 
revenue, assuming that the buyer is quasi-linear—i.e. will buy the item i maximizing vi − pi , as long as this difference is 
positive. That is, the seller’s expected revenue from a price vector P = (p1, . . . , pn) is

RP =
n∑

i=1

pi · Pr
[
(i = arg max{v j − p j}) ∧ (vi − pi ≥ 0)

]
, (1)

where we assume that the arg max breaks ties in favor of a single item, when there are multiple maximizers. A more 
sophisticated seller could try to improve her revenue by pricing lotteries over items, that is also price randomized allocations 
of items (Briest et al., 2010), albeit this may be less natural than item pricing, and we will not study it extensively in this 
paper.
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While our problem has a simple statement, it exhibits rich behavior depending on the nature of F . For example, if F
assigns the same value to all the items with probability 1, i.e. when the buyer always values all items equally, the problem 
becomes single-dimensional. In this setting, it is clear that lotteries do not improve the revenue and that the optimal price 
vector can assign the same price to all the items. This observation is a special case of the more general, celebrated result 
of Myerson (1981) on optimal mechanism design, i.e. the multi-buyer version of our problem, and generalizations thereof. 
Myerson’s result provides a closed-form solution to the multi-buyer problem in a single sweep that covers many settings, 
but only works under the same limiting assumption that every buyer is single-dimensional, i.e. receives the same value 
from all the items. (More generally, every buyer receives the same value from all outcomes of the mechanism that provide 
her service.)

Following Myerson, a large body of research in both Economics and Engineering has been devoted to extending his 
result to the multi-dimensional setting, where the buyers’ values come from general distributions. And, while there has been 
sporadic progress (see survey Manelli and Vincent, 2007 and its references), an optimal multi-dimensional mechanism, 
generalizing Myerson’s result, does not seem to be in sight. Indeed, there is not even an optimal solution known for the 
single-buyer item pricing problem. Even the ostensibly easier version of that problem, where the values of the buyer for 
the items are independent and supported on a set of cardinality 2 is unresolved.3 Our main contribution in this paper is to 
develop near-optimal polynomial-time algorithms for this problem, when the buyer’s values for the items are independent.

1.1. Main results

We partition our results into algorithmic and structural. The former provide efficient algorithmic procedures for comput-
ing near-optimal price vectors. The latter shed light into the structure of optimal solutions.

Algorithmic results. Previous work on the item pricing problem has provided constant factor approximation algorithms. 
The best known polynomial-time algorithm obtains revenue that is at least 1/2 of the revenue of the optimal price vec-
tor (Chawla et al. 2007, 2010a). We discuss these approaches in Section 1.3, also noting that they are limited to constant 
factor approximations. We are aiming instead for item pricing mechanisms that come arbitrarily close to the optimal rev-
enue, obtaining the following results. Their proofs are overviewed in Sections 4 through 9, while complete details are 
provided in Appendices A–J.

Theorem 1 (Main algorithmic result: additive PTAS for bounded distributions). Suppose that the values of the buyer for n items are 
independent and normalized to lie in [0, 1]. Then, for all ε > 0, there exists an algorithm that computes a price vector whose revenue 

is within an additive ε of optimal, and whose running time is polynomial in n
log3 1/ε

ε4 .

Theorem 2 (General algorithm). Suppose that the values of the buyer for n items are independent and supported on some interval 
[umin, r · umin] for some umin > 0 and r ≥ 1. Then, for all ε > 0, there is an algorithm that computes a price vector whose revenue is at 

least a (1 − ε)-fraction of the optimal revenue, and whose running time is polynomial in max

{
nlog11 r·log log r,n

log3 r·log 1
ε

ε8

}
.4

Theorem 3 (Multiplicative PTAS for MHR distributions). There is a Polynomial-Time Approximation Scheme5 for computing an optimal 
price vector, when the values of the buyer are independently drawn from Monotone Hazard Rate distributions.6

For any accuracy ε > 0, the algorithm runs in time polynomial in n
1
ε7 , and outputs a price vector whose revenue is at least a 

(1 − ε)-fraction of the optimal revenue, where n is the number of items.

Theorem 4 (Multiplicative Quasi-PTAS for regular distributions). There is a Quasi-Polynomial-Time Approximation Scheme7 for com-
puting an optimal price vector, when the values of the buyer are independent and drawn from regular distributions.8

3 Incidentally, the problem is trickier than it originally seems, and various intuitive properties that one would expect from the optimal solution fail to 
hold. See Appendix J for an interesting example.

4 We note that a natural approach for computing approximately optimal price vectors is to discretize the domain of price vectors and show that searching 
over the discretized domain suffices for approximating the optimal revenue. However, a straightforward application of the discretizations proposed by Nisan 
(Chawla et al., 2007) and Hartline and Koltun (2005) to our problem would result in running time of 

(
1
ε log r

)O (n)

. The purpose of our theorem is to remove 
the exponential dependence of the running time on the number of items n.

5 A Polynomial-Time Approximation Scheme (PTAS) is a family of algorithms {Aε }ε , indexed by the accuracy parameter ε > 0, such that for every fixed 
ε > 0, Aε runs in time polynomial in the size of its input. See Section 2 for a formal definition.

6 Monotone Hazard Rate (MHR) distributions are a commonly studied class of distributions that contain such familiar distributions as the Uniform, 
Gaussian and Exponential distributions. See Section 2 for a formal definition.

7 A Quasi-Polynomial-Time Approximation Scheme (Quasi-PTAS) is a family of algorithms {Aε }ε , indexed by the accuracy parameter ε > 0, such that for 
every fixed ε > 0, Aε runs in time quasi-polynomial in the size of its input. See Section 2 for formal definition.

8 Regular distributions are another widely studied class of distributions that contain MHR distributions. See Section 2 for a formal definition.
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