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Joint inversions are now commonly used in the earth sciences. They have been developed to better
understand the structure of the earth, since they provide more constraints on the inverted parameters.
We propose a new process to simultaneously invert several data sets in order to better image 3D crustal
and upper mantle structures. Our inversion uses three kinds of data that present good complementarity:
(1) P-wave receiver functions to provide Moho depth variations, (2) teleseismic delay times of P-waves to
retrieve velocity anomalies in the crust and the upper mantle, and (3) gravity anomalies to image density
variations at the lithospheric scale. We use a stochastic scheme, where receiver functions are first
inverted. The interpolated resulting Moho depths are incorporated as a priori information into the joint
inversion of teleseismic delay times and gravity anomalies process. Moreover, velocity and density can be
linked by empirical relationships, which justifies the joint inversion of those parameters. In our stochastic
approach, we perform a model space search for Moho variations, P-velocity, and density structure to find
an acceptable fit to the three data sets. In order to preferentially sample the good data fit regions, we
chose the neighborhood algorithm of Sambridge to optimistically survey the model space. We model the
delay times with 3D raytracing using evenly spaced velocity-density nodes. We present here the first

results given by this method on synthetic tests.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cooperative inversions of geophysical data have been intro-
duced by Lines et al. (1988). The aim of this concept is to obtain a
geophysical model consistent with multiple datasets. Two differ-
ent philosophies have been defined depending on the inversion
procedure: sequential or joint inversion. In the sequential
approach, the inversion for a particular data set provides the
input or initial model estimate for the inversion of a second data
set; joint inversion treats all the datasets simultaneously. How-
ever, in this second process, the datasets should be linked with a
relationship.

Whichever approach is used, the user faces the difficulty of
solving the inverse problem and thus the choice of an adapted
algorithm. Classically, during the past decades, most geophysical
inverse problems were solved by inverting matrices using meth-
ods such as weighted least-squares analysis (e.g., Menke, 1984,
Aki et al., 1977). Joint inversions of geophysical data in general
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were developed following this procedure (e.g., Lees and VanDecar,
1991a; Maceira and Ammon, 2009; Julia et al., 2000; Parsons
et al., 2001; Tikhotsky and Achauer, 2008). However, the use of
stochastic methods have become increasingly successful due to
the extreme growth of computing power, the gathering of
computing resources (clusters and national and international
grids), and the development of probabilistic methodology
(Tarantola and Valette, 1982). These approaches (Monte Carlo,
neighborhood algorithm, etc.) randomly investigate the model
space to propose a set of models minimizing the data misfit
(e.g., Moorkamp et al., 2010; Bosch et al., 2006; Kozlovskaya et al.,
2007). One advantage is that they keep track of all tested models,
and the user can then choose the one(s) best fitting his or her a
priori prerequisite. Moreover, as only direct calculations are
needed, we avoid mathematical approximations, global damping
procedures, and the often subjective process of finding an optimal
regularization value (e.g., Bodin et al., 2009). In addition, we
overcome extensive matrix management.

Linearized inversions are greatly dependent on the initial
model. Consequently, their results can be irrelevant when only
little a priori information is added. (Chang et al., 2004). The use of
a stochastic algorithm can therefore be appropriate. Moreover,
solving highly nonlinear problems by direct calculations rather
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than matrix inversion proves to be more relevant (Zeyen and
Achauer, 1997). We thus propose to combine a stochastic
algorithm with a joint inversion of seismological and gravimetric
data in order to image the perturbing structures at a lithospheric
scale.

Among all the stochastic methods, we use the neighborhood
algorithm (NA), already tested and validated for several geophy-
sical applications (among others: receiver functions (Sambridge,
1999a), seismic events location (Sambridge and Kennett, 2001),
waveform inversion for surface waves (Yoshizawa and Kennett,
2002)). This method is performed on one hand on gravity and
teleseismic delay times for their good complementarity (e.g., Nafe
and Drake, 1957; Birch, 1961); on the other hand on receiver
function to solve for major interface geometry. The introduction
of the latter is essential to distinguish between real velocity-
density anomalies and interface fluctuations.

We investigate this new approach through different synthetic
tests. Also, we develop a misfit function that takes into account
the dissimilarities between the two data set populations. By using
the receiver function results as a priori information into the
inversion scheme, the user is then able to weight the data sets
to retrieve both interfaces and 3D velocity-density structures
within the lithosphere and asthenosphere.

2. Consistency and complementarity

Joint inversions result from the necessity to improve geophysical
data inversion with additional constraints. Thus, they are mean-
ingful only if there is a complementarity between independent data
sets either by physical laws (e.g., Bosch and McGaughey, 2001, for
joint inversions of gravity and magnetic data) or by common
geometry or parameters (e.g., Julia et al, 2002, or Gallardo and
Meju, 2007 for joint inversions of receiver functions and surface
waves). In our case, we jointly invert gravity data and teleseismic
P-wave delay times in order to retrieve the velocity—density
structure, taking advantage of empirical relationships between those
parameters (Birch, 1961). Also, we include Moho depth variations
obtained from the inversion of the P-wave receiver function as a
priori information in the joint inversion process.

Potential field interpretation suffers from the well-known
nonunique determination of the source parameters from its field
data. This is not only because of an insufficient knowledge of the
field with respect to the number of unknown source parameters
or to errors of theoretical and experimental nature, but also
coming from inherent nonuniqueness (Blakely, 1995; Fedi and
Rappola, 1999).

One benefit of jointly inverting gravity and seismic tomography
is the complementarity between their best-resolution areas. Indeed,
the resolution of regional teleseismic tomography depends on ray
coverage and increases with depth, with a gap near the surface
(0-50 km). However, at these depths, gravity inversions using the
terrestrial Bouguer anomaly reach their best-resolution rate.

A second advantage of considering velocity and density is the
existence of simple empirical relations (Nafe and Drake, 1957; Birch,
1961) linking those two parameters. Density and velocity are usually
inverted cooperatively (e.g., Vernant et al., 2002, or Lees and
VanDecar, 1991b for sequential inversion and joint inversion,
respectively) using a constant linear relationship between density
and velocity (e.g. Birch, 1961). The velocity-density joint inversion
of Tiberi et al. (2003) used the approach suggested by Zeyen and
Achauer (1997) and Jordan and Achauer (1999) to treat the B factor
linking velocity and density variations as a parameter allowed to
vary around a given value. However, this process leads to a highly
nonlinear problem that is hardly resolved by standard linear
inversion of matrix (Tiberi et al., 2003; Basuyau et al., 2010).

In our inversion scheme, we link velocity Vp and density p using
Birch’s law (1961),

Vp=Bp+A,

where A and B are constant parameters for each layer whose values
are chosen by the user. The two parameters can therefore take
different values with depth to better depict the correlation between
velocity and density (Christensen and Mooney, 1995). In our
method, B and A are constant parameters because considering them
as varying parameters lead to a too highly nonlinear problem (Zeyen
and Achauer, 1997).

Many of the regional tomographic methods (e.g., the ACH
method from Aki et al., 1977) set the initial model up as
successive horizontal layers so that Moho depth variations appear
as velocity anomalies within the horizontal layers. However, in
many geodynamical contexts, such as passive margins or con-
vergence zones, the approximation of nonexistent Moho depth
variations is not justified and can lead misinterpretation. The
method we present here proposes to consider Moho depth
variations obtained by the inversion of receiver functions in a
joint inversion scheme for both tomographic and gravity data. In
addition, we used an algorithm that gives absolute velocity and
density instead of anomalies as usually obtained in regional
teleseismic tomography (e.g., ACH methods, Lévéque and
Masson, 1999).

3. Inversion procedure

The structural organization of the inversion is illustrated by
the flowchart in Fig. 1. The code is organized in two independent
parts: the first part is dedicated to the inversion of receiver
function and in the second part density and velocity are inverted.
As we use the same stochastic algorithm for both parts, we
dedicated the first paragraph of this section to its understanding.

3.1. Neighborhood algorithm

We use a stochastic method called the neighborhood algo-
rithm (NA) (Sambridge, 1999a,1999b) that makes use of geome-
trical constructs known as Voronoi cells to drive the search in
parameter space. The cells are used to construct an approximate
misfit surface at each iteration, and successive iterations concen-
trate sampling in the regions of parameter space that have low
data misfit.

Unlike previous methods (e.g., linearized inversions), the
objective is to generate a set of models with an acceptable data
fit rather then to seek a single optimal model. The entire
ensemble can be used to extract robust information about the
model parameters, such as resolution and tradeoffs. This is
performed within a Bayesian framework and is discussed in more
detail in Sambridge (1999b). Even though global optimization is
not the primary objective of the NA, it has been shown to work
well in this respect for both receiver function inversion
(Sambridge, 1999a) and seismic event location (Sambridge and
Kennett, 2001). The behavior of the search algorithm is controlled
by two parameters, ns and n, (with ng>n;), where ng is the
number of models tested at each iteration and n;, is the number of
Voronoi cells resampled at each iteration. The NA can be sum-
marized by the following:

e First, ng models are randomly generated, and a misfit value is
calculated for each model.

e Next, the n, models with the lowest misfit are determined, and
a random walk is performed inside their Voronoi cells in order
to generate a new set of ng models.
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