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Received 25 February 2013 setting where players initially know their own payoffs but not the other player’s. In order

Available online 3 February 2014 to find a solution of reasonable quality, some amount of communication is required. We

study algorithms where the communication is substantially less than the size of the game.
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Keywords: approximation quality achievable, while for well-supported equilibria, no value of € <1 is
Two player achievable. When the players do not communicate at all, e-Nash equilibria can be obtained
Mixed strategy for € = %; we also provide a corresponding lower bound of slightly more than % on the
Approximate equilibria smallest constant € achievable.
Efficient algorithms © 2014 Elsevier Inc. All rights reserved.

1. Introduction

Algorithmic game theory is concerned not just with properties of a solution concept, but also how that solution can be
obtained. It is considered desirable that the outcome of a game should be “easy to compute”, which is typically formalized
as polynomial-time computability, in the algorithms community. In that respect the PPAD-completeness results of Daskalakis
et al. (2009a) and Chen and Deng (2006) are interpreted as a “complexity-theoretic critique” of Nash equilibrium. Following
those results, a line of work addressed the problem of computing €-Nash equilibrium, where € > 0 is a parameter that
bounds a player’s incentive to deviate, in a solution. Thus, €-Nash equilibrium imposes a weaker constraint on how players
are assumed to behave, and an exact Nash equilibrium is obtained for ¢ = 0. The main open problem is to find out what
values of € admit a polynomial-time algorithm. Below we summarize some of the progress in this direction.

Beyond the existence of a fast algorithm, it is also desirable that a solution should be obtained by a process that is simple
and decentralized, since that is likely to be a better model for how players in a game may eventually reach a solution. In
that respect, most of the known efficient algorithms for computing €-Nash equilibria are not entirely satisfying. They take
as input the payoff matrices and output the approximate Nash equilibrium. If we try to translate such an algorithm into
real life, it would correspond to a process where the players pass their payoffs to a central authority, which returns to them
some mixed strategies that have the “low incentive to deviate” guarantee. In this paper we aim to model a setting where
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players perform individual computations and exchange some limited information. We revisit the question of what values of
€ are achievable, subject to this restriction to more “realistic” algorithms.

There are various ways in which one can try to model the notion of a decentralized algorithm; here we consider a
general approach that has previously been studied in Conitzer and Sandholm (2004) and Hart and Mansour (2010) in the
context of computing exact Nash equilibria. The players begin with knowledge of their own payoffs but not the payoffs
of the other players; this is often called an uncoupled setting (see Section 1.2.4 for an overview). An algorithm involves
communication in addition to computation; to find a game-theoretic solution, a player usually has to know something
about the other players’ matrices, but hopefully not all of that information. We study the computation of €-Nash equilibria
in this setting, and the general topic is the trade-off between the amount of communication that takes place, and the value
of € that can be obtained. In uncoupled settings, there are natural dynamic processes that converge to correlated equilibria,
but the results are less positive for exact and approximate Nash equilibria. This paper aims to contribute to the general
goal of evaluating the merits of approximate Nash equilibrium as a solution concept, as opposed to (for example) exact or
approximate correlated equilibrium.

1.1. Definitions

We consider 2-player games, with a row player and a column player, who both have n pure strategies. The game (R, C) is
defined by two n x n payoff matrices, R for the row player, and C for the column player. The pure strategies for the row
player are his rows and the pure strategies of the column player are her columns. If the row player plays row i and the
column player plays column j, the payoff for the row player is R;;, and Cj; for the column player. For the row player a mixed
strategy is a probability distribution x over the rows, and a mixed strategy for the column player is a probability distribution
y over the columns, where x and y are column vectors and (X, y) is a mixed strategy profile. The payoffs resulting from these
mixed strategies X and y are X' Ry for the row player and x'Cy for the column player.

A Nash equilibrium is a pair of mixed strategies (x*,y*) where neither player can get a higher payoff by playing another
strategy assuming the other player does not change his strategy. Because of the linearity of a mixed strategy, the largest
gain can be achieved by defecting to a pure strategy. Let e; be the vector with a 1 at the i-th position and a 0 at every
other position. Thus a Nash equilibrium (x*, y*) satisfies

Vi=1...n e Ry*< (x*)TRy* and (x*)TCei < (x*)TCy*.

We assume that the payoffs of R and C are between 0 and 1, which can be achieved by affine transformations. An
e-approximate Nash equilibrium (or, €-Nash equilibrium) is a strategy pair (x*,y*) such that each player can gain at most €
by unilaterally deviating to a different strategy. Thus, it is (x*,y*) satisfying

Vi=1...n e Ry*< (x*)TRy* +e€ and (x*)TCei < (x*)TCy* +e.

We say that the regret of a player is the difference between his payoff and the payoff of his best response.

The support of a mixed strategy X, denoted Supp(x), is the set of pure strategies that are played with non-zero probability
by x. An approximate well-supported Nash equilibrium strengthens the requirements of an approximate Nash equilibrium. For a
mixed strategy y of the column player, a pure strategy i € [n] is an €-best response for the row player if, for all pure strategies
i’ € [n] we have: eiTRy > e} Ry — €. We define e-best responses for the column player analogously. A mixed strategy profile
(x,y) is an e-well-supported Nash equilibrium (¢-WSNE) if every pure strategy in Supp(X) is an e€-best response against y,
and every pure strategy in Supp(y) is an €-best response against X.

The communication model: Each player q € {r, c} has an algorithm A; whose initial input data is g’s n x n payoff matrix.
Communication proceeds in a number of rounds, where in each round, each player may send a single bit of information to
the other player. During each round, each player may also carry out a polynomial (in n) amount of computation. (A natural
variant of the model would omit the restriction to polynomial computation. Indeed, our lower bounds on communication
requirement do not depend on computational limits.) At the end, each player g outputs a mixed strategy x;. We aim to
design (pairs of) algorithms (A, Ac) that output e-Nash strategy profiles (X, X.), and are economical with the number of
rounds of communication. This is similar to the mixed Nash equilibrium procedure of Hart and Mansour (2010), here applied
to approximate rather than exact equilibria.

Notice that given ©@(n?) rounds of communication, we can apply any centralized algorithm .4 by getting (say) the row
player to pass additive approximations of all his payoffs to the column player, who applies A and passes to the row player
the mixed strategy obtained by .4 for the row player. (The quality of the e-Nash equilibrium is proportional to the quality of
the additive approximations used.) For this reason we focus on algorithms with many fewer rounds, and we obtain results
for logarithmic or polylogarithmic (in n) rounds.

We also consider a restriction to one-way communication, where one player may send but not receive information.
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