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We propose a dynamic framework where the rationality of a player’s choice is judged on
the basis of the actual beliefs that he has at the time he makes that choice. The set of
“possible worlds” is given by state-instant pairs (ω, t), where each state specifies the entire
play of the game. At every (ω, t) the beliefs of the active player provide an answer to the
question “what will happen if I take action a?”, for every available action a. A player is
rational at (ω, t) if either he is not active or the action he takes is optimal given his beliefs.
We characterize backward induction in terms of the following event: the first mover (i) is
rational and has correct beliefs, (ii) believes that the active player at date 1 is rational and
has correct beliefs, (iii) believes that the active player at date 1 believes that the active
player at date 2 is rational and has correct beliefs, etc.
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1. Introduction

The analysis of rational play in dynamic games is usually done within a static framework that specifies, for every player,
his initial beliefs as well as his disposition to revise those beliefs conditional on hypothetical states of information that
the player might find himself in. This is done by means of interactive structures which model a rather complex web
of beliefs: for example, Player 2 might initially believe that Player 1 will end the game right away and yet have very
detailed beliefs about what Player 1 would believe about Player 2’s revised beliefs if Player 1 were instead to give the
move to Player 2. In these models each player is assumed to have not only a disposition to revise his own beliefs, should
he be faced with unexpected information, but also to have (conditional) beliefs about the disposition of the other play-
ers to revise their beliefs. This seems to constitute a rather “heavy” approach to modeling the players’ states of mind in
a dynamic game. It is shown in this literature (Battigalli et al., 2012; Battigalli and Siniscalchi, 2002; Ben-Porath, 1997;
Samet, 1996; Stalnaker, 1998) that common initial belief of rationality does not imply a backward-induction outcome in
perfect-information games.

In this paper we suggest an alternative and “lighter” approach, where the rationality of a player’s choice is judged on
the basis of the actual beliefs that the player has at the time he makes that choice. We propose a dynamic analysis of perfect-
information games where the set of “possible worlds” is given by state-instant pairs (ω, t). Each state ω specifies the entire
play of the game and, for every instant t , (ω, t) specifies the history that is reached at that instant (in state ω). A player
is said to be active at (ω, t) if the history reached in state ω at time t is a decision history of his. At every state-instant
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pair (ω, t) the beliefs of the active player provide an answer to the question “what will/might happen if I take action a?”,
for every available action a. A player is said to be rational at (ω, t) if either he is not active there or the action he ends up
taking at state ω is optimal given his beliefs at (ω, t). We provide a characterization of backward induction in terms of the
following event: the first mover (i) is rational and has correct beliefs, (ii) believes that the active player at date 1 is rational
and has correct beliefs, (iii) believes that the active player at date 1 believes that the active player at date 2 is rational and
has correct beliefs, etc.

This can be stated more precisely as follows. First we define a time-t belief operator Bt which captures the beliefs
of the active player and enables us to express a player’s belief that the next player will respond rationally to his choice.
Let Tt be the set of states where the active player at date t (if there is any) has correct beliefs and let Rt be the set
of states where the choice of the active player at date t is rational. In keeping with the literature, we focus on perfect-
information games with no relevant ties where there is a unique backward-induction solution. We prove the following
characterization. For every m greater than or equal to the depth of the game, if ω ∈ (T0 ∩R0)∩ B0(T1 ∩R1)∩ B0 B1(T2 ∩ R2)∩
· · · ∩ B0 B1 · · · Bm−2(Tm−1 ∩ Rm−1) then the play associated with ω is the backward-induction play. Conversely, if z is the
backward-induction play then there is a model of the game and a state ω such that ω ∈ (T0 ∩ R0) ∩ B0(T1 ∩ R1) ∩ · · · ∩
B0 B1 · · · Bm−2(Tm−1 ∩ Rm−1) and the play associated with ω is z.

Thus we provide an epistemic characterization of backward induction that does not rely on (objective or subjective)
counterfactuals or on dispositional belief revision. Furthermore, strategies do not play any role in our framework.

The analysis is developed in Sections 2 and 3, while Section 4 is devoted to a discussion of conceptual aspects of the
proposed approach and of related literature. The proofs are given in Appendix A.

2. Perfect-information games and models

We use the history-based definition of extensive-form game. If A is a set, we denote by A∗ the set of finite sequences
in A. If h = 〈a1, . . . ,ak〉 ∈ A∗ and 1 � j � k, the sequence 〈a1, . . . ,a j〉 is called a prefix of h. If h = 〈a1, . . . ,ak〉 ∈ A∗ and a ∈ A,
we denote the sequence 〈a1, . . . ,ak,a〉 ∈ A∗ by ha.

A finite extensive form with perfect information (without chance moves) is a tuple 〈A, H, N, ι〉 whose elements are:

• A finite set of actions A.
• A finite set of histories H ⊆ A∗ which is closed under prefixes (that is, if h ∈ H and h′ ∈ A∗ is a prefix of h, then h′ ∈ H).

The null history 〈 〉, denoted by ∅, is an element of H and is a prefix of every history. A history h ∈ H such that, for
every a ∈ A, ha /∈ H , is called a terminal history. The set of terminal histories is denoted by Z . D = H \ Z denotes the
set of non-terminal or decision histories. For every history h ∈ D , we denote by A(h) the set of actions available at h,
that is, A(h) = {a ∈ A: ha ∈ H}.

• A finite set N of players.
• A function ι : D → N that assigns a player to each decision history. Thus ι(h) is the player who moves at history h. For

every i ∈ N , let Di = ι−1(i) be the set of histories assigned to player i.

Given an extensive form, one obtains an extensive game by adding, for every player i ∈ N , a utility (or payoff ) function
Ui : Z →R (where R denotes the set of real numbers; recall that Z is the set of terminal histories).

Given a history h ∈ H , we denoted by �(h) the length of h, which is defined recursively as follows: �(∅) = 0 and if
h ∈ D and a ∈ A(h) then �(ha) = �(h) + 1. Thus �(h) is equal to the number of actions that appear in h; for example,
if h = 〈∅,a1,a2,a3〉 then �(h) = 3. We denote by �max the length of the maximal histories in H : �max = maxh∈H {�(h)}.
Clearly, if �(h) = �max then h ∈ Z . Given a history h ∈ H and an integer t with 0 � t � �max, we denote by ht the prefix of h
of length t . For example, if h = 〈∅,a,b, c,d〉, then h0 = ∅, h2 = 〈∅,a,b〉, etc.

From now on histories will be denoted more succinctly by listing the corresponding actions, without angled brackets and
without commas: thus instead of writing 〈∅,a1,a2,a3,a4〉 we will simply write a1a2a3a4.

Let Ω be a set of states and T = {0,1, . . . ,m} a set of instants or dates. We call Ω × T the set of state-instant pairs.
If E ⊆ Ω × T and t ∈ T , we denote by Et the set of states {ω ∈ Ω: (ω, t) ∈ E}.

Definition 1. Given an extensive form with perfect-information G = 〈A, H, N, ι〉, a state-time representation of G is a triple
〈Ω, T , ζ 〉 where Ω is a set of states, T = {0,1, . . . ,m} with m � �max (recall that �max is the depth of the game) and
ζ : Ω → Z is a function that assigns to every state a terminal history. Given a state-instant pair (ω, t) ∈ Ω × T , let

ζt(ω) =
{

the prefix of ζ(ω) of length t if t < �(ζ(ω)),

ζ(ω) if t � �(ζ(ω)).

Interpretation: the play of the game unfolds over time; the first move is made at date 0, the second move at date 1, etc.
A state ω ∈ Ω specifies a particular play of the game (that is, a complete sequence of moves leading to terminal history
ζ(ω)); ζt(ω) denotes the “state of play at time t” in state ω, that is, the partial history of the play up to date t [if t is less
than the length of ζ(ω), otherwise – once the play is completed – the state of the system remains at ζ(ω)].
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