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a b s t r a c t

In this paper we present a formulation of the joint inversion of potential field anomaly data as an op-
timization problem with partial differential equation (PDE) constraints. The problem is solved using the
iterative Broyden–Fletcher–Goldfarb–Shanno (BFGS) method with the Hessian operator of the regular-
ization and cross-gradient component of the cost function as preconditioner. We will show that each
iterative step requires the solution of several PDEs namely for the potential fields, for the adjoint defects
and for the application of the preconditioner. In extension to the traditional discrete formulation the
BFGS method is applied to continuous descriptions of the unknown physical properties in combination
with an appropriate integral form of the dot product. The PDEs can easily be solved using standard
conforming finite element methods (FEMs) with potentially different resolutions. For two examples we
demonstrate that the number of PDE solutions required to reach a given tolerance in the BFGS iteration is
controlled by weighting regularization and cross-gradient but is independent of the resolution of PDE
discretization and that as a consequence the method is weakly scalable with the number of cells on
parallel computers. We also show a comparison with the UBC–GIF GRAV3D code.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The inversion of geophysical data is the solution of an optimi-
zation problem subject to constraints in the form of partial dif-
ferential equations (PDEs). A PDE constraint provides a prediction
of measured quantities for a given geological model and is
sometimes referred to as the forward model. The cost function to
be minimized defines the data misfit of the prediction to the ob-
servational data. In the case of weakly constrained geology, which
we are particularly interested in for this paper, a regularization
term (Tikhonov and Arsenin, 1977) for the geological model is
added to the cost function in order to obtain convergence towards
the simplest model realization. In fact, the additional regulariza-
tion guarantees the uniqueness and existence of a solution of the
optimization problem. A framework for magnetic data has been
developed by Li and Oldenburg in the mid-1990s (Li and Old-
enburg, 1996) and later extended to gravity anomaly data (Li and
Oldenburg, 1998). It is now widely used in the exploration in-
dustry (Oldenburg and Pratt, 2007). The approach is based on a
discrete representation of the geological model and a continuous
representation of the forward model using Green's functions.

Various improvements have been added, in particular regulariza-
tion [e.g. Zhdanov, 2009; Portniaguine and Zhdanov, 1999], solving
large-scale problems using conjugate gradient based solvers
(Zhdanov and Tolstaya, 2004), and sparsification of the sensitivity
matrix (Li and Oldenburg, 2003).

In this paper we present a formulation of the inversion problem
for potential field data which is consistent with the use of the fi-
nite element method (FEM) (Zienkiewicz et al., 2013) to construct
for the model representation, the cost function gradient and the
potential fields. Using FEM provides a variety of advantages over
the conventional Green's function approach. Firstly, it allows for
more general forms of the forward model for the potential fields,
for instance self-demagnetization (Lelièvre and Oldenburg, 2006).
Secondly, the discretization is spatially sparse and does not require
sparsification when solving large-scale problems. Finally, well-
developed technology is available to handle large-scale FEM pro-
blems on parallel compute architectures, see e.g. Heroux and et al.
(2005).

In contrast to conventional inversion methods working on a
discrete version of the problem the method proposed in this paper
is applied directly to the problem in continuous form. It is based
on the iterative limited-memory Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method (Nocedal and Wright, 2006). An evaluation
of the cost function to be minimized requires the solution of the
forward problem, and an additional PDE for the so-called adjoint
defect (Plessix, 2006) needs to be solved to calculate the cost
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function gradient. The inverse of the Hessian operator of the reg-
ularization part of the cost function – again defined through the
solution of a PDE – is used as preconditioner for the BFGS itera-
tions in order to accelerate its convergence and to improve its
robustness. In accordance with the FEM method the involved PDEs
– these are the PDE constraint, the adjoint PDE and the pre-
conditioner – are solved in weak form. Summations over cell va-
lues of physical properties as used in the conventional BFGS ver-
sion are replaced by appropriate integrals due to the different
representation of the unknown introduced here. These can be
evaluated exactly for a FEM representation of the physical prop-
erties. At the limit of convergence our approach returns a solution
that is identical to results using the all-at-once method, e.g. Haber
and Ascher (2001). However our approach avoids building a sys-
tem of three coupled PDEs and still solves an optimization pro-
blemwithout (directly) introducing a Lagrangian multiplier for the
constraint.

In the following we will discuss the solution of joint inversion
of gravity and magnetic anomaly data sets. In the case of strong
correlation it is assumed that a functional relationship between
density and susceptibility is available, e.g. from borehole logs.
Then the geological structure can be represented through a single
property function which is constructed analogously to a single
inversion with a single regularization term, but two independent
forward models need to be considered. An alternative is to assume
weak correlation between density and susceptibility based on
geometrical alignment, with two property functions used as
proxies for density and susceptibility. Driven by the idea that there
is still a single geological structure present, the contours of the
property functions should be aligned, in particular in regions of
strong contrast. This can be achieved by maximizing a covariance
measure of the contour orientation. We use the cross-gradient
term of the property functions (Gallardo and Meju, 2004).

This paper is organized as follows. In Section 2 we formulate
the joint inversion problems. Sections 3 and 4 discuss the calcu-
lation of the cost function gradient and the application of the BFGS
method to the continuous inversion problem, respectively. Section
5 gives a brief introduction into FEM and its parallelization. Nu-
merical experiments for two- and three-dimensional data are
presented in Section 6 including a comparison with the UBC–GIF
GRAV3D code. As a key result the experiments show that the
number of BFGS steps is in fact independent of the mesh resolu-
tion demonstrating the effectiveness of the chosen precondition-
ing strategy. As a consequence the presented method is compu-
tationally scalable with the number of FEM cells subject to the use
of a computationally scalable FEM solver.

2. Problem formulation

Given is a bounded domain 3Ω ⊂ covering a subsurface re-
gion for which rock properties are to be calculated, as well as a
region above ground in which data for the potential field
anomalies have been obtained. The task is to provide a possible
distribution of rock properties in the subsurface region which fits
the measured anomalies.

2.1. The potential field problem

Rock features in the subsurface are described by a real valued
property function m defined on Ω. It is assumed that the density
distribution is given in the form

a m b 1ρ = · + ( )

with spatially variable coefficients a and b. In practice the density

ρ is an anomaly defining deviation from a homogeneous back-
ground density. For some applications a reference density dis-
tribution ρref and depth weighting factor α is introduced (Li and
Oldenburg, 1998) for which Eq. (1) takes the form m ref

1ρ α ρ= +− .
The magnetization is similarly described in the form

M A m B 2
→

=
→

· +
→ ( )

where the coefficients A
→

and B
→

consider inducing magnetic field,
depth weighting and a reference susceptibility model (Li and
Oldenburg, 1996). The unknown property function m is to be cal-
culated through the inversion. In parts of the domain – in parti-
cular in the regions above ground – density and/or magnetization
may be known. For these locations the property function is set to
zero and appropriate choices for the coefficients in Eqs. (1) and (2)
can be taken. For reasons of numerical stability it is assumed that
values of m are scaled between zero and one. The method pre-
sented in this paper can easily be extended to cases where the
dependence of density and magnetization on the property func-
tion is non-linear. For the sake of simplicity we present the line-
arized version only.

Forces due to density or to magnetization are derived from
scalar potentials Φ solving a partial differential equation (PDE).
The PDE is solved in its weak form (Zienkiewicz et al., 2013) which
is given as

dx a m b A m B dx 3
t t( )∫ ∫Ψ Φ Ψ Ψ∇

→
·∇
→

= ·( · + ) + ∇
→

·(
→

· +
→

) ( )Ω Ω

for all admissible potentials Ψ . In this context a function Ψ on the
domain is called an ‘admissible potential’ if it is sufficiently smooth
and is zero on the top of the domain in the same way as the po-
tential field Φ. The symbol ∇

→
refers to the gradient operator, and

t
Ψ∇

→
is a short form for the transposed vector tΨ(∇

→
) . When solving

for the gravity potential we set A
→

and B
→

to zero, and for the
magnetic potential we set a and b to zero. It is pointed out that the
weak formulation implicitly imposes the boundary condition

n n A m B 4
t tΦ→ ·∇

→
= → ·(

→
· +

→
) ( )

with surface outer normal field n→ on all parts of the domain
boundary except on the top of the domain where the potentials
are set to zero.

2.2. Data misfit function

For a given property function m the data misfit function D
measures the deviation of the resulting accelerating forces from
the scalar potential Φ solving the forward problem (3) from the
measured data d. We use the form

D w d dx
1
2 5

t 2∫Φ Φ( ) = (→ ·∇
→

− ) ( )Ω

where d are the measured data for the acceleration force and the
vector w wi

→ = ( ) sets the orientation in which the acceleration force
has been measured. In practical applications one sets w xi (

→) to 1/σ
if at location x→ the ith component of the acceleration force has
been measured as d x /σ(→) with a known error 0σ > . At all other
locations x→ and for all other components i one sets w x 0i (

→) = and
d x 0(→) = . Notice that w→ is non-zero on a very small portion of the
domain. It is pointed out that summation over various surveys
including overlapping regions can be added but is omitted here for
the sake of a simpler presentation.

2.3. The inversion problem

If a functional relationship between susceptibility and density
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