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a b s t r a c t

Gravity Terrain Correction (GTeC) is a versatile MATLAB
s

code for terrain correction aimed to this pur-
pose and capable of going beyond the limits of other public domain codes targeted to this aim.

It runs with input gravity data (absolute measurements or free air anomalies) at the land/sea surface
and with one or more DTMs (indifferently gridded or scattered) at different detail levels. Each of them
can be used to calculate the gravity contribution of a concentric terrain zone around the point station
with increasing resolution toward the center. The user can choose between two alternative algorithms
for terrain modeling. The simplest one considers each grid point as the flat top of a squared prism. For
areas closer to the point station a second algorithm can be chosen to better approximate the relief, with
respect to others formulas, by means of a tessellation based network formed by triangular prisms. A
more precise terrain correction is therefore achieved, especially in presence of high topographic gra-
dients or just outside the sea/land boundaries. In the last case a suitable algorithmwas expressly devised
to fit the tessellation based network to the irregular trend of the coastline.

GTeC calculates also free air anomalies and both plate and curvature corrections, providing also a
complete graphic output including topography, free air anomalies, plate correction, total terrain cor-
rection, Bouguer anomalies and the terrain effect due to each computational zone.

GTeC speeds up CPU times taking advantage from the parallel computing functions and from the
vectorization code, both exploited in MATLAB

s

. Two code versions of GTeC (for normal or parallel
computation), executable under MATLAB environment (pcode), are fully available as public domain
software.

The results of a synthetic case, of a real case at the regional scale and of a microgravity survey carried
out at a short scale, are here presented.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of gravity anomaly concerns the numerical dif-
ference between measured gravity and theoretical gravity ex-
pected. It needs a number of corrections to the theoretical value
that are usually referred to the instrumental drift, the earth tides,
the latitude of the point station and to its elevation above the
reference level (e.g. the sea level).

After calculated the free air anomalies by means of a simplified
formula (Lambert, 1930; Heiskanen and Moritz, 1967), the gravity
effect due to masses not included in the reference spheroid has to
be removed by adding to the free-air anomaly the Bouguer cor-
rection that is usually calculated in three steps. Firstly, the slab
correction (Bullard A), approximates the relief to an horizontal
infinite slab with thickness equal to the elevation of the station on

the reference level.
The second step is the curvature correction (Bullard B), firstly

applied by Bullard (1936). It takes into account the curvature of
the Earth surface modifying the infinite slab modeled with the
Bullard A to a spherical cap with the same thickness and extended
up to a proper distance (usuallyE167 km) from the point mea-
surement. Among the authors that developed approximations for
Bullard B (LaFehr, 1991; Whitman 1991) suggested a simplified
formula that speeds up the computation preserving the precision.

However, the reliefs placed above the elevation of the point
station pull up on the instrument but they are not included within
the slab. In addition, the lack of rock below the station, due to the
sea bed terrain, decreases the observed value of gravity. Moreover,
the slab correction erroneously assigns the reference density also
to the cavities represented by the valleys within the slab.

The terrain correction (Bullard C) provides for such an over-
compensation introduced in the previous cases by the slab cor-
rection. Hayford and Bowie (1912) firstly applied to gravity mea-
surements a correction to take into account the effect of the
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topographic ondulations of the earth surface.
The idea of automatic computing was early proposed to over-

come the well known problems related to the traditional methods
(Hammer, 1939) in terms of both long time spent for calculations
and precision depending on average heights estimated at a glance.

Bott (1959) and Kane (1962) firstly used gridded elevation data
and formulas for the gravitational effect of regular solids to per-
form a computer-aided terrain correction but only for the distant
zone, whereas Karlemo (1963) carried out the computations in
two stages using two nets and including the near region as well.

Olivier and Simard (1981) developed a terrain correction based
on the conic prism model. Ketalaar (1987) adopted the formula for
a square vertical prism with a sloping surface to better approx-
imate the real topographic surface. Cogbill (1990) approximated
the innermost terrain surface using the rectangular integration
rule of Renka and Cline (1984). Ma and Watts (1994) modeled the
distant topography as distribution of masses along vertical lines
and the near and inner zones as a set of, respectively, rectangular
and triangular prisms with sloping upper face.

The terrain representation was also carried out by means of a
set of Gaussian functions (Herrera-Barrientos and Fernandez,
1991) or of the Fourier methods to convert a power series for the
topographic elevation into a series of convolutions (Parker, 1995,
1996). The method speeds up the CPU time consuming but Tsoulis
(1998) reported problems with dense topographic grids causing
divergence and Gomez et al. (2013) confirmed significant over-
estimation at high elevations with respect to the classical
integration.

Other authors suggested techniques based on spherical har-
monic of the terrain elevation developed to the third power (Na-
havandchi and Sjoberg, 1998). Banerjee (1998) uses digital terrain
data for the outer zone and station-dependent compartmentalized
data for the inner zone by approximating the relief with equian-
gular sector of conic prism models.

Hwang et al. (2003) suggested to approximate the terrain by
means of a point-wise algorithm based on the Gaussian quad-
rature. Fullea et al. (2008) calculate the gravitational effect due to a
flat topped squared prism for the outer and intermediate zones
using, respectively, the McMillan (1958) and that Nagy et al.
(2000) formulas. Following Lopez (1990), they divide the inner-
most zone in four quadrants and approximate the relief falling
inside each of them into one-fourth of conic prism with its vertex
coinciding with the point station.

Some authors (Lopez, 1990; Hwang et al., 2003; Banerjee, 1998,
Fullea et al., 2008), made available the code lists to run their
programs. Nevertheless, they seem to manage the digital terrain
models under too restrictive conditions, limiting their practical
application.

As an example, only the program released by Fullea et al.
(2008) seems to deal with the terrain correction also with offshore
point stations. Moreover, it is not clear whether and how the other
available codes make calculations with points station nearby the
shorelines, perhaps with high slope gradients.

Lopez (1990) prescribes the use of a single DTM with a step grid
fixed at 1 km and limited at a 40�40 km2 wide zone around the
station. Hwang et al. (2003) divide the terrain around each station
only in two zones (outer and inner) making difficult in some cases
a versatile management of the available data sets. Again, a more
precise computation is set only in a small, fixed, area delimited by
only the eight elevation points surrounding the station and di-
vided into octants (Lopez, 1990) or conic prisms (Banerjee, 1998;
Fullea et al., 2008). In addition, in both cases the chosen shape
slopes from the apex, coinciding with the station, toward each
outer edge placed to a given height. Since this edge is delimited by
two adjacent DTM grid points at different eights, an unavoidable
error affects a precise reproduction just where it should be

needed. On the other hand, the program by Fullea et al. (2008)
runs only if DTM data are both gridded and coinciding with the
gravity (free air) data. This condition is strongly restrictive because
it is satisfied only in some cases (i.e. satellite-derived data) but not
when gravity measurements are taken on scattered point stations.

2.1. Gravity corrections

Among all the input data sets (gravity meter measurements,
normal gravity, geodetic latitude, free air anomaly) GTeC checks
which input data are available and individuates which output is
computable and which not, showing a warning message, if nee-
ded. In fact GTeC provides the complete Bouguer anomaly calcu-
lating normal gravity, free air correction, free air anomaly, plate
correction, curvature correction and, finally, terrain correction.

GTeC runs accepting, indifferently, both free air anomalies and
instrumental measurements as input data. When geodetic lati-
tudes and instrumental measurements are available (referred to
the International Gravity Standardization Net 1971–IGSN71), the
program calculates the normal gravity on the Geodetic Reference
System 1980 (GRS80) ellipsoid using the Somigliana's formula,
considered more accurate than those based on the first and second
Chebyshev approximations.

In a second step, the free air correction is calculated by ap-
plying the reduction by Heiskanen and Moritz (1967) based on the
GRS80 parameters.

The curvature correction (Bullard B) should be applied as a
refinement of the plate correction because it minimizes the dif-
ference between the gravity effect of the horizontal slab and that
of the real spherical cap due to the Earth curvature. If required,
GTeC calculates the Bullard B basing on Whitman (1991) and de-
creasing the computation time as a counterweight to a quite small
loss of precision (less than 1 μGal for Bouguer slabs of thickness up
to 4 km).

The program can therefore calculate the simple Bouguer
anomaly. Finally, the last and most crucial step of the procedure,
namely the terrain correction, is carried out as described in the
next section.

2.2. Terrain correction by GTeC: general features

GTeC accepts measurements points with regular or scattered
distribution. Also the digital terrain models used as input data can
consist in topographic elevations both equi-spaced and irregularly
distributed above the surface. Like most terrain correction algo-
rithms, also GTeC needs only gridded DTM. Therefore, in case of
input scattered elevations, the program automatically interpolates
the data with the most appropriate grid size chosen by the user.

GTeC uses from one to four topographic data sets to take ad-
vantage from an increasing accuracy toward the point station if
more digital elevation models with different resolution are avail-
able. Therefore, the whole area considered for terrain correction is
divided in five computational zones: distant zone (zone I), inter-
mediate zone (zone II), internal zone (zone III), closest zone (zone
IV) and near station zone (zone V).

However, all elevation points have to be positioned so that each
grid is exactly nested inside the other, thus filling the blank vo-
lumes existing between prisms of adjoining data sets. This is an
uncommon case and therefore, it is necessary to re-grid each DTM
to meet such a requirement. GTeC can automatically perform this
step. Data interpolation is a crucial task because output grids can
strongly change depending on the chosen interpolating algorithm.
In this case GTeC performs a Delaunay triangulation of the data
creating a mesh of triangles with planar surfaces for each triangle
(linear interpolation). However, DTMs are usually gridded and this
makes easier the task, since the interpolation of data in a uniform
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