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We discuss the emergence of cooperation in repeated Trust Mini-Games played by finite
automata. Contrary to a previous result obtained by Piccione and Rubinstein (1993), we
first prove that this repeated game admits two Nash equilibria, a cooperative and a non-
cooperative one. Second, we show that the cooperative equilibrium is the only (cyclically)
stable set under the so-called best response dynamics.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Repeated games have enormous sets of equilibria. In a seminal article, Abreu and Rubinstein (1988) introduced the idea
that the equilibrium selection problem could be addressed by modeling strategies as finite automata. In this approach, the
total payoff of a strategy is a combination of the complexity of the automaton that represents it (as measured by the number
of its states) and the payoff it obtains in the playing of the game. They proved that arbitrarily small costs of complexity
could drastically reduce the strategies that can be sustained in equilibrium. In the repeated Prisoners’ Dilemma (PD), for
example, some popular strategies such as Tit for Tat (TfT) cannot be Nash equilibria. The reason is that, in playing against
itself, TfT never reaches the states in which it does not cooperate. It follows that a strategy of unconditional cooperation is
a best response to TfT, because it obtains the same payoff as TfT itself, but with a smaller number of states.

Abreu and Rubinstein (1988) proved that cooperation can only be achieved by machines that put the “punishing phase”
first. Each machine starts by “punishing” the other by playing Defect for a fixed number of rounds and does not revert to
cooperation unless the other machine has played Defect for the same number of rounds. Once the “punishing phase” is
over, both machines start cooperating. Switching to defection during the “cooperative phase” is deterred by the threat to
start the punishment phase all over again. Abreu and Rubinstein (1988) provide a nice interpretation of this initial phase of
punishment as a “show of strength”: at the beginning of the play, each machine will “test” the ability of the other machine
to punish an eventual defection. Machines that are unable to “punish” are exploited by unending defection.

While this argument drastically restricts the strategies that one can observe in equilibrium, it still allows for a huge
variety of possible outcomes, including perpetual defection. Binmore and Samuelson (1992) used an evolutionary model to
study the resulting equilibrium selection problem and obtained a stark result. When the cost of complexity is so small that
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Fig. 1. The Trust Mini-Game.

it can be ranked lexicographically after the game payoffs, the only (modified) evolutionarily stable strategies are those that
cooperate throughout the game. However, this result proved to be fragile. Volij (2002) showed that it crucially depends on
the way complexity costs are modeled. When they enter directly into a machine’s payoff function the opposite conclusion
holds true: Defect is the only evolutionarily stable strategy.2

We contribute to this literature by studying the emergence of cooperation in sequential games, and in particular in the
Trust Mini-Game (TG) in Fig. 1. It is the sequential version of a PD, in which the first player (the Sender) chooses whether
to Trust (T ) the second player (Receiver), who in turn decides whether to Reward (R) the Sender’s trust or not (NR). With
the assumption that v S < 0 < 1 < V R , (NT,NR) is the game’s unique Nash equilibrium.

At first sight, cooperation is even less likely to emerge in sequential games than in simultaneous ones. Piccione and
Rubinstein (1993) proved that in any sequential game, if players are constrained to choose pure strategies, the only Nash
equilibria for the machine game are constant repetitions of one of the equilibria of the stage game. In the TG this entails
that there are no pure strategy equilibria other than an infinite repetition of (NT,NR). The intuition behind their result is
as follows. In the TG the punishment phase would consist of a finite number of rounds in which the Sender plays NT and
the Receiver plays NR. However, the Receiver’s behavior cannot be observed when the Sender plays NT . It follows that the
Receiver can eliminate the states associated with the punishment phase (in which he plays NR) and reduce the complexity
of his strategy. Without the punishment phase, however, cooperation cannot be in equilibrium.

To prove that cooperation can emerge in the repeated TG we have first to show that (contrary to Piccione and Rubinstein,
1993) there can be an NE in which the two players play Trust and Reward. We do this by relaxing the assumption that play-
ers are constrained to use pure strategies. This assumption was common in the early literature, where it was justified with
the argument that it is unclear how the complexity of a mixed strategy could be modeled (see Abreu and Rubinstein, 1988).
However, in the kind of evolutionary models we shall deal with, mixed strategies have an uncontroversial interpretation
in terms of polymorphisms within populations of agents, each of whom uses a pure strategy. In these models considering
mixed strategies is important because mixed strategy NE may turn out to be stable under some adjustment dynamics.

We first show that once players are allowed to use mixed strategies, Piccione and Rubinstein’s (1993) result is over-
turned: besides a set of non-cooperative equilibria, there is a (mixed strategy) cooperative Nash equilibrium. Second, we
address the equilibrium selection problem by using the so-called best response dynamics. The game is assumed to be
played repeatedly by agents belonging to two separate populations, one of senders the other of receivers. Occasionally,
agents are given the opportunity to change the machine they use to play the repeated game, in which case they adopt the
machine that yields the largest payoff. We show that under this adjustment process there is a path that leads from the non-
cooperative equilibrium to the cooperative one, but not vice versa. Formally, the cooperative mixed strategy NE is socially
stable in the sense introduced by Matsui (1992), while the set of non-cooperative equilibria is not. This shows that Volij’s
(2002) result is also fragile. In a Prisoner’s Dilemma in which one player is allowed to choose first, the non-cooperative
equilibrium cannot be stable and cooperation is bound to emerge.

The paper proceeds as follows. Section 2 introduces the necessary technicalities and definitions. Section 3 contains the
proof that a cooperative equilibrium exists in the repeated TG. Section 4 introduces the best response dynamics and proves
that the cooperative equilibrium is the only stable equilibrium. Section 5 concludes. All proofs are relegated to Appendix A.

2. The model: definitions

Two players repeatedly play the Trust Game in Fig. 1. We shall indicate with S S = {T ,NT} and S R = {R,NR} the pure
strategy sets for the Sender and the Receiver. The set E = {NT, (T ,NR), (T , R)} is the set of outcomes of the game. (Note
that since the trust game is an extensive form game, E does not correspond to S S × S R .) hi(e) is the payoff that player i
obtains on reaching the end-node e ∈ E (i = Sender,Receiver).

A finite automaton, or a machine, M is a finite collection of states of which one is the initial one. Each state is associated
to a strategy, which is the strategy the automaton plays when in that state. After each round the state of the automaton
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