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VISIM: Sequential simulation for linear inverse problems$

Thomas Mejer Hansen�, Klaus Mosegaard

Niels Bohr Institute, Juliane Maries Vej 28, 2100 København Ø, Denmark

Received 24 March 2006; received in revised form 14 February 2007; accepted 28 February 2007

Abstract

Linear inverse Gaussian problems are traditionally solved using least squares-based inversion. The center of the

posterior Gaussian probability distribution is often chosen as the solution to such problems, while the solution is in fact the

posterior Gaussian probability distribution itself. We present an algorithm, based on direct sequential simulation, which

can be used to efficiently draw samples of the posterior probability distribution for linear inverse problems. There is no

Gaussian restriction on the distribution in the model parameter space, as inherent in traditional least squares-based

algorithms.

As data for linear inverse problems can be seen as weighed linear averages over some volume, block kriging can be used

to perform both estimation (i.e. finding the center of the posterior Gaussian pdf) and simulation (drawing samples of the

posterior Gaussian pdf). We present the kriging system which we use to implement a flexible GSLIB-based algorithm for

solving linear inverse problems.

We show how we implement such a simulation program conditioned to linear average data. The program is called

VISIM as an acronym for Volume average Integration SIMulation. An effort has been made to make the program

efficient, even for larger scale problems, and the computational efficiency and accuracy of the code is investigated.

Using a synthetic cross-borehole tomography case study, we show how the program can be used to generate realizations

of the a posteriori distributions (i.e. solutions) from a linear tomography problem. Both Gaussian and non-Gaussian a

priori model parameter distributions are considered.
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1. Introduction

Some data d are indirect measurements, and
hence a function of some model parameters m

(typically describing subsurface structure). Let the

forward problem be the problem of calculating data
from a given set of model parameters using a
function g, typically related to some physical
problem, such that d ¼ gðmÞ. We refer to the
problem of inferring properties of m from measure-
ments d as the inverse problem.

In a Bayesian formulation the solution to an
inverse problem is a probability density function
(pdf) (the posterior pdf, s) which is given as a norma-
lized (K is a normalization factor) product of the pdf
describing the a priori information (the prior pdf, r)
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and the likelihood function (D), related to the
forward operator g (which is related to some physical
law) (Tarantola, 2005):

sðd;mÞ ¼ Krðd;mÞDðd;mÞ. (1)

In case the inverse problem is linear, such that the
operator g is linear, and Gaussian, such that the prior
pdf and the noise distribution is Gaussian, the
solution to the inverse problems is a Gaussian pdf
described by a mean and a covariance.

The center of this Gaussian a posteriori pdf is
often chosen as the ‘solution’ to the inverse
problem, but this point cannot adequately describe
the a posteriori pdf. To do this a representative
sample (a set of realizations) of the posteriori pdf
must be generated, from which a posteriori statistics
can be obtained. This can be done using for example
Markov chain Monte Carlo methods (Mosegaard
and Tarantola, 1995). This is, however, computa-
tionally very expensive.

Hansen et al. (2006) show how the a posteriori
Gaussian distribution can be exactly described by a
simple kriging system with noisy data of mixed
support (that is, point- as well as volume support).
Therefore sequential simulation techniques can be
used to efficiently draw samples of the a posteriori
pdf, as described by Hansen et al. (2006) and
Gómez-Hernández and Cassiraga (2000).

In this manuscript we will introduce the kriging
system to deal with noisy data of mixed support.
Using this kriging system we show how to imple-
ment a sequential simulation program that gener-
ates realizations of a random field with a chosen a
priori mean, variance, covariance and histogram,
honoring observations of point- as well as volume
support.

This approach can be used to solve linear inverse
problems with an a priori two-point covariance
model, in the sense that actual samples from the a
posteriori distribution of a linear inverse problem
can be drawn in a computationally efficient manner.
This is an improvement over traditional least
squares-based linear inversion where only the center
of the Gaussian posterior pdf is chosen as the
solution.

Making use of direct sequential simulation
(dssim), the method we propose is not restricted to
the assumption of a Gaussian distribution over the
model parameter space as in traditional least
squares-based linear inversion. Any histogram can
be used to describe the prior distribution over the
model parameter space.

Using a synthetic cross-borehole tomography
example we will illustrate the use of the program
as well as investigate the computational efficiency
and accuracy of a number of available simulation
and estimation options.

2. Theory

Hansen et al. (2006) describe how samples of the
a posteriori pdf of linear Gaussian inverse problems
can be generated using sequential simulation. The
least squares system used by Hansen et al. (2006) as
part of sequential simulation, can be formulated as
a simple kriging system with weighed linear average
data with associated Gaussian measurement error.
This is the kriging system we use as part of the
presented sequential simulation algorithm, and it
will be briefly introduced here.

Let ZðuÞ denote the measurement of some
random variable Z at the location u with measure-
ment error R. This is the definition of a datum of
‘point support’. For the remainder of this paper we
will refer to measurement errors as errors that are
non-systematic, uncorrelated with the random
function Z and possibly correlated among them-
selves, following Chiles and Delfiner (1999, p. 211).

Let Zv be the measurement of a weighted linear
average of Z over the block v, with measurement
error R, such that

Zv ¼
1

jvj

Z
v

wðuÞZðuÞduþ R ð2Þ

�
1

N
P

wðuiÞ

XN

i¼1

wðuiÞZðuiÞ þ R, ð3Þ

where wðuÞ is an averaging kernel allowing variable
weight within the defined support. jvj is the volume
of the support. This is the definition of a datum with
‘volume support’. Any datum of a Gaussian linear
inverse problem can be given by Zv.

In the discrete case, Eq. (3), wðuiÞ are averaging
weights for each of the N points, u ¼ ½u1; u2; . . . ; uN �

in the support v. If N ¼ 1 and wðu1Þ ¼ 1, Eq. (3)
reduces to an expression for a measurement of point
support, and therefore data of any support is
described by Eqs. (2)–(3).

Given n data, Zv;i where i ¼ 1; . . . ; n, interpreted
as average measurements of a realization of a
stationary random function, RF, and an a priori
model of the mean m, variance s20, and covariance C

(two-point spatial connectivity) of the RF, the mean
and variance of the Gaussian pdf, Nðmk; s

2
kÞ,
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