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a b s t r a c t

Inferring a ground-motion prediction equation (GMPE) for a region in which only a small number of
seismic events has been observed is a challenging task. A response to this data scarcity is to utilise data
from other regions in the hope that there exist common patterns in the generation of ground motion
that can contribute to the development of a GMPE for the region in question. This is not an unreasonable
course of action since we expect regional GMPEs to be related to each other. In this work we model this
relatedness by assuming that the regional GMPEs occupy a common low-dimensional manifold in the
space of all possible GMPEs. As a consequence, the GMPEs are fitted in a joint manner and not
independent of each other, borrowing predictive strength from each other's regional datasets.
Experimentation on a real dataset shows that the manifold assumption displays better predictive
performance over fitting regional GMPEs independent of each other.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The goal of probabilistic seismic hazard analysis (PSHA) is the
estimation of the future expected distribution of ground motion at
a particular site of interest. This requires a description of possible
earthquake sources affecting the site as well as the characterisa-
tion of possible ground motions generated by these earthquakes.
This second aspect is usually addressed within a PSHA by using
ground-motion prediction equations (GMPEs) which give an
estimate of the conditional distribution of a ground-motion para-
meter of interest given earthquake related and site related para-
meters such as magnitude and source-to-site-distance or rock
type. The ground-motion parameter of interest is usually peak
ground acceleration (PGA) or response spectral values.

Typically, GMPEs are estimated by regression on a strong-
motion dataset. For a historical overview and a list of published
GMPEs, see Douglas (2011) and references therein. Due to the
sparsity of strong-motions, in particular large earthquakes are rare,
datasets underlying GMPEs often cover large areas—see for exam-
ple the pan-European GMPEs described in Douglas et al. (2014), or
the NGA-West 2 GMPEs (Abrahamson et al., 2014; Boore et al.,
2013; Campbell and Bozorgnia, 2014) which are based on a global
dataset. In fact, the subject of regional dependence of GMPEs is
still a matter of active debate (Douglas, 2007). However, recently

four of the NGA-West 2 GMPEs (Abrahamson et al., 2014; Boore
et al., 2013; Campbell and Bozorgnia, 2014; Chiou and Youngs,
2014) have included regional variations in their models in the form
of a different distance attenuation for different regions. Basically,
the models use a common basis estimated using all the data, and
then deviate from this common basis using regional data.

In this paper we take a different approach to the estimation of
regional GMPEs. We start out from a large, pan-European data set
(Akkar et al., 2014) which we divide into regional subsets based on
geoscientific considerations. Each subset is modelled by a regional
GMPE and we make the assumption that the set of all regional
GMPEs reside on a common low-dimensional manifold embedded
in the space of all possible GMPEs. Roughly speaking, a manifold
can be thought of as a generalisation of a surface to higher
dimensions, i.e. a hypersurface. Thus, the regional GMPEs are
forced to share the common structure imposed by the manifold,
and this helps each GMPE borrow predictive strength from the
others. As experimental support, we demonstrate the proposed
approach on the RESORCE dataset (Akkar et al., 2014) and show
that it performs well in terms of predictive accuracy.

2. Manifold aligned GMPEs

2.1. A general ground-motion prediction equation

We assume that we are dealing with a dataset of observed
ground-motion data that originate from R regions indexed by

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

http://dx.doi.org/10.1016/j.cageo.2014.04.014
0098-3004/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: ngianni@geo.uni-potsdam.de (N. Gianniotis),

kuehn@berkeley.edu (N. Kuehn), fs@geo.uni-potsdam.de (F. Scherbaum).

Computers & Geosciences 69 (2014) 72–77

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2014.04.014
http://dx.doi.org/10.1016/j.cageo.2014.04.014
http://dx.doi.org/10.1016/j.cageo.2014.04.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.04.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.04.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2014.04.014&domain=pdf
mailto:ngianni@geo.uni-potsdam.de
mailto:kuehn@berkeley.edu
mailto:fs@geo.uni-potsdam.de
http://dx.doi.org/10.1016/j.cageo.2014.04.014


r¼ 1;…;R. Each region holds NðrÞ pairs of inputs (covariates) xðrÞn

and outputs (responses) yðrÞn : xðrÞn is a vector xðrÞn ¼ ½Mw;Rhyp;VS30;φ�
holding recordings of the magnitude Mw, hypocentral distance
Rhyp, the average shear wave velocity in the upper 30 m VS30 and
fault mechanism φAf0¼ strike slip=normal;1¼ reverseg of seis-
mic records, and yðrÞn is the logarithmic PGA of the seismic events.
Hence, the rth region is associated with a dataset DðrÞ that
comprises NðrÞ pairs of inputs–outputs, DðrÞ ¼ fðxðrÞ1 ; yðrÞ1 Þ;…;

ðxðrÞ
NðrÞ ; y

ðrÞ
NðrÞ Þg. The subscripts and superscripts n; r are dropped

whenever we refer to logarithmic PGA y and measurements x as
general quantities (i.e. not particular data items).

In order to model the functional dependency between mea-
surements x and logarithmic PGA y, we adopt a function g with
coefficients c which reads:

gðx; cÞ ¼ c1þc2Mwþc3M
2
wþðc4þc5MwÞ log ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
hypþc26

q
Þ

þc7 ln VS30þc8φ: ð1Þ
Coefficients c reside in D-dimensional coefficient space denoted by
C. Here D¼8 for the 8 coefficients in Eq. (1). The functional
dependency in Eq. (1) is similar to the one used to develop the
European GMPE in Akkar and Bommer (2010). We use this form
because it is relatively simple but still able to capture the general
characteristics of ground-motion scaling.

Typically, one assumes that the variability of the observed data
is described by a Gaussian density with variance s2. This gives rise
to the following negative log-likelihood for a dataset of N data
items:

� log ∏
N

n ¼ 1
N ðyn; gðxn; cÞ;s2Þ ¼ 1

s2 ∑
N

n ¼ 1
ðyn�gðxn; cÞÞ2þconst: ð2Þ

Fitting a GMPE to a set of observed data involves minimising the
objective in Eq. (2) with respect to the free coefficients c and s2.
In this work, we assume that all regions have about the same
variance s2, and henceforth we discard it as a multiplicative
constant. Minimising Eq. (2) yields the maximum likelihood
estimate cML. The prediction of the fitted GMPE on a unseen test
input xn is simply gðxn; cMLÞ.

When R regions are fitted independently, we assign one GMPE
per region with its own coefficients cðrÞ. Hence, R independent
objectives of the type in Eq. (2) are minimised. The R independent
objectives can be simply summarised as

∑
R

r ¼ 1
∑
NðrÞ

n ¼ 1
ðyðrÞn �gðxðrÞn ; cðrÞÞÞ2: ð3Þ

This situation is illustrated in Fig. 1 which shows the coefficient
space C. Every point in C corresponds to a coefficient vector c. Each
dataset DðrÞ gives rise to likelihood contours in C that show which
coefficients are likely under Eq. (3). The likelihood contours are
depicted with brighter and darker shades indicating low and high
likelihood respectively. Since the R GMPEs (R¼4 in the stylised
example of Fig. 1) are treated independent of each other, coeffi-
cients cðrÞ converge on the dark areas of their respective likelihood
contours when optimising Eq. (3), i.e. they converge on their
maximum likelihood estimates cðrÞML.

2.2. Model formulation

Model gðx; cÞ is governed by its coefficient vector c that belongs
to coefficients space C. Thus, we can say that each coefficient
vector c addresses a model gðx; cÞ, and space C addresses the
entirety of possible models gðx; cÞ. When we fit a region indepen-
dent of the others, we do not impose any constraints on c. Instead,
we allow it to roam freely in C, and independent of the other
regions, until it converges to cML that maximises the region's
likelihood.

We now introduce the assumption that the regional GMPEs are
organised on a manifold. For each coefficient vector cðrÞ we
postulate a Q-dimensional parameter zðrÞ that resides in the
Q-dimensional Euclidean space denoted by H. We take QoD.
We also postulate a smooth mapping F : H-C that takes inputs zðrÞ

and maps them to coefficients FðzðrÞÞ ¼ cðrÞ. That is, coefficients cðrÞ

are the images of the low-dimensional zðrÞ under mapping F. Since
QoD, mapping F embeds H as a manifold M into C. Hence,
coefficients cðrÞ are now constrained to reside on M and are no
longer free to roam anywhere in C. This is illustrated in Fig. 2.
Instead of estimating each coefficient vector cðrÞ independently, we
now attempt to identify the manifold M that produces the best fit
for all regional data.

Mapping F is parametrised by a weight vector w. Specifically,
we choose F to be a neural network.1 We now write down the
objective for the R regional GMPEs with coefficients cðrÞ con-
strained on manifold M:

∑
R

r ¼ 1
∑
NðrÞ

n ¼ 1
ðyðrÞn �gðxðrÞn ; FðzðrÞ;wÞÞ2: ð4Þ

Comparing to Eq. (3), we see that the free parameters are the
parameters zðrÞ and w. Parameters zðrÞ control the position of

c
c

c
c

Coefficient Space C
Fig. 1. Stylised depiction of coefficient space C. Each point in C corresponds to a
coefficient vector c. Depicted are the maximum likelihood estimates cML (only for
4 regions) as points in C obtained by optimising the objective in Eq. (3). The
contours show how likelihood for each regional model is distributed in C.
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Fig. 2. Mapping F embeds the low-dimensional space H as a manifold in the
coefficient space C. The coefficients cðrÞ of the regional GMPEs are the images of the
parameters zðrÞ under mapping F.

1 We specify that F is a feed-forward neural network with a single hidden layer,
hidden neurons that use the tanh activation function, and outputs that are linear
(Bishop, 1995).
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