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ABSTRACT

This paper addresses the estimation of geometric anisotropy parameters from scattered spatial data that
are obtained from environmental surveillance networks. Estimates of geometric anisotropy improve the
accuracy of spatial interpolation procedures that aim to generate smooth maps for visualization of
the data and for decision making purposes. The anisotropy parameters involve the orientation angle of the
principal anisotropy axes and the anisotropy ratio (i.e., the ratio of the principal correlation lengths). The
approach that we employ is based on the covariance Hessian identity (CHI) method, which links the mean
gradient tensor with the Hessian matrix of the covariance function. We extend CHI to clustered CHI for
application in data sets that include patches of extreme values and clusters of varying sampling density.
We investigate the impact of CHI anisotropy estimation on the performance of spatial interpolation by
ordinary kriging using a data set that involves both real background radioactivity measurements and a
simulated release of a radioactive plume.
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1. Introduction

Geoinformatics aims at the development of information science
infrastructures for handling problems in the geosciences, as well as
in geotechnical, environmental and mining engineering. It involves
the development and management of data structures and data-
bases, the utilization of networking and communication technol-
ogies for the transfer of the data, as well as the development and
application of statistical methodologies for the processing of the
data. Terrestrial environmental monitoring networks involve irre-
gular distribution of measurement stations in space. The local
density and characteristics of the networks are influenced by
various factors, including national environmental policies, terrain
topography and proximity to urban centers. However, in order to
visualize and analyze the information provided by the network for
decision making purposes, smooth maps of the monitored process
are required. To generate smooth maps, a spatial model is needed
for interpolation of the measurements on regular map grids.
Remote sensing measurements are also affected by the problem
of missing data (Rossi et al., 1994; Foster and Evans, 2008).
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Geostatistical methods are important for the statistical proces-
sing of the information provided by environmental networks, since
they permit characterization and quantification of spatial depen-
dencies from scattered data for subsequent use in spatial inter-
polation and map generation. An accurate spatial model used in a
geostatistical setting should incorporate estimates of anisotropy.
For use in a near-automatic system, anisotropy estimation should
require at most a few free parameters, to allow utilization by non-
experts in Geostatistics. In addition, the anisotropy estimation
approach must be flexible and computationally fast, in order to
handle sensor networks with dynamic geometry.

Anisotropy in spatial data appears in two forms: trend aniso-
tropy and statistical anisotropy. For a polynomial trend function
my(s)=S1_, S¥_, @i X'y, where s=(xy), the coefficients
a;x_; are determined by spatial regression and anisotropy implies
that a;;_; # ax_;;. Statistical anisotropy involves geometric and
zonal anisotropy. The former involves different correlation lengths
in different principal directions, while the latter implies different
variogram sills in different directions. Zonal anisotropy is typically
observed when the data involve two processes, one of which
evolves in a lower-dimensional space. Here we focus on the
estimation of statistical geometric anisotropy. In two spatial
dimensions, geometric anisotropy is determined from two para-
meters: the orientation angle of the principal axes and the ratio of
the correlation lengths along the principal directions.

Estimation of the anisotropy parameters is typically based on
empirical methods such as fitting of experimental directional
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variograms or on the rigorous, but computationally demanding,
maximum likelihood method. The estimation of empirical vario-
grams involves many ad hoc decisions, such as number of lag
classes, lag tolerances, maximum lag, the minimum number of
pairs per lag class and the type of estimator (e.g., classical Matheron
or robust estimator), thus introducing considerable uncertainty in
variogram estimation (Marchant and Lark, 2004). Anisotropy
estimates require fitting the empirical variograms to theoretical
model expressions and selecting an optimal model. The latter
depends on the suite of models considered and the fitting method
used (e.g., weighted least squares, generalized least squares)
(Genton, 1998).

Maximum likelihood (ML) and restricted maximum likelihood
(REML) estimation are elegant methods with good asymptotic
properties. However, they are computationally demanding, espe-
cially for large data sets (e.g., more than 1000 points). The
computational complexity of these methods scales as O(N*), where
N is the number of sampling points. The total number of steps, and
thus the total computational time, depends on the initial guesses
for the variogram model parameters. Every step in the optimization
procedure requires the inversion of a covariance matrix, which
implies an O(N®) computational cost. In addition, the computation
needs to be repeated for every variogram model tested. The
methods based on the empirical variogram and the likelihood-
based methods require specification of a variogram model to
generate anisotropy estimates.

The recently proposed covariance Hessian identity (CHI) or
covariance tensor identity (CTI) method (Hristopulos, 2002;
Chorti and Hristopulos, 2008) provides a computationally fast
approach for the estimation of geometric anisotropy parameters.
Unlike methods based on maximum likelihood or the empirical
variogram, CHI does not require a parametric covariance model.
The tradeoff is that CHI assumes a differentiable covariance model.
A deterministic interpolation method (e.g., bilinear or bicubic,
minimum curvature) or Savitzky-Golay polynomial filtering is
used to estimate the sample derivatives of scattered data (Chorti
and Hristopulos, 2008). Here we opt for the former approach, which
necessitates the use of anisotropy estimation grids. Several of these
grids may be used (see Section 3.1), if the sampling density varies
significantly over the study area.

The differentiability assumption is not a significant restriction
on the choice of the variogram model: In addition to the classical
Gaussian model, both Matérn and Spartan (Hristopulos, 2003;
Hristopulos and Elogne, 2007) families provide covariance func-
tions with controllable differentiability properties. A more sig-
nificant issue is the presence of uncorrelated random noise
(nugget) in the data, which destroys the differentiability of the
observed realization. Nonetheless, the estimates of the derivatives
are based on finite differences and not on a mathematical limit, and
thus they admit finite values at the scale of the anisotropy
estimation grid. The CHI method uses these values to extract
anisotropy parameters corresponding to a differentiable random
field. If the nugget is non-zero, as is typically the case for geospatial
data, CHI tends to underestimate the true anisotropy. The impact of
white Gaussian and lognormal noise addition is investigated in
Chorti and Hristopulos (2008).

The remainder of this manuscript is structured as follows:
Section 2 briefly describes the radioactivity data, which are used to
illustrate the proposed methodological developments. The clus-
tered CHI method for anisotropy analysis is presented in Section 3.
Clustered CHI involves segmentation of the data into domains to
handle extreme values separately and partitioning of the domains
into clusters based on sampling density variations for efficient
estimation of anisotropy. In Section 4 we use the clustered CHI
method to determine the anisotropy of the radioactivity data. We
also use cross-validation measures to compare the performance of

Table 1

Statistics of GDR data used in case study. Symbols used denote: zy;,, minimum
value; ¢, first quartile; g, median; m,, mean value; g3, third quartile; zmax,
maximum; o,, standard deviation; u,, skewness; k,, kurtosis.

Zmin a2 m, qs Zmax 0z H, k,

29.0 858 131.0 2442.0 3082.0 26990.0 437136 229 525

kriging-based spatial interpolation with and without domain
partitioning and anisotropic corrections. In addition, we present
kriged maps of the radioactivity distribution and compare the
different modeling assumptions. Finally, in Section 5 we present
our conclusions. From the methodological viewpoint, this paper
extends the scope of CHI by combining it with image segmentation
techniques for clustering and by developing coarse-grained aniso-
tropy parameters over different clusters. From a practical perspec-
tive, it investigates the impact of anisotropy estimation on
interpolation performance for a data set characterized by sampling
density irregularities and extreme values.

2. Description of the data

The data set involves scattered measurements of gamma dose
rates (GDR) in Europe. Our aim is to analyze the anisotropy of the
data and to investigate the impact of anisotropy modeling in the
performance of spatial interpolation and map generation. The GDR
data were provided by the German Federal Office for Radiation
Protection (Bundesamt fiir Strahlenschutz) in the framework of the
INTAMAP project.! The sampling network is represented by the
sites of the European Radiological Exchange Platform (EURDEP). A
total of N=3626 sampling sites are used with their positions
expressed in the INSPIRE coordinate system.? GDR is measured in
nanoSievert per hour (nSv/h). The network involves both densely
sampled areas (e.g., Germany and Austria) and sparsely sampled
ones (e.g. South Europe).

Real background radioactivity measurements are combined
with simulations that include systematic errors, local peaks due
to washout effects caused by heavy rainfall, single peaks due to
lighting strikes, and areas of extreme values resulting from the
dispersion of a radioactive plume caused by a simulated reactor
accident in central Europe. The simulations are generated with the
RODOS system (Ehrhardt, 1997) using meteorological information
from the German weather service. The time of the simulated
accident was 23:40 on January 6, 2008. Forecasts of the plume
dispersion were produced at +18, +30, +42, and +54 h from the
starting time, for an area of 2500 x 2500 km? centered at the city of
Offenbach. We used the +42 h time slice for the spatial analysis.
The statistics of the GDR data, given in Table 1, exhibit large
variability and strong deviations from Gaussianity.

Below, we estimate the anisotropy of this data set, and we
analyze its impact on interpolation (ordinary kriging) performance
as well as on the patterns of the generated maps.

3. The clustered CHI method for anisotropy estimation

This section presents in detail the methodologies proposed for
anisotropy estimation. The procedures described below focus on
the following tasks: (i) segmentation of the sensor network in
domains of normal and extreme values, (ii) the subsequent

! Interoperability and Automated Mapping. 6th Framework Programme, ICT for
Environmental Risk Management. URL: http://www.intamap.org/

2 Infrastructure for Spatial Information in the European Community. EU 7th
Framework Programme. URL: http://inspire.jrc.ec.europa.eu/
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