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a b s t r a c t

We review and give a practical example of Latin hypercube sampling in soil science using an approach
we call flexible Latin hypercube sampling. Recent studies of soil properties in large and remote regions
have highlighted problems with the conventional Latin hypercube sampling approach. It is often
impractical to travel far from tracks and roads to collect samples, and survey planning should recognise
this fact. Another problem is how to handle target sites that, for whatever reason, are impractical to
sample – should one just move on to the next target or choose something in the locality that is
accessible? Working within a Latin hypercube that spans the covariate space, selecting an alternative site
is hard to do optimally. We propose flexible Latin hypercube sampling as a means of avoiding these
problems. Flexible Latin hypercube sampling involves simulated annealing for optimally selecting
accessible sites from a region. The sampling protocol also produces an ordered list of alternative sites
close to the primary target site, should the primary target site prove inaccessible. We highlight the use of
this design through a broad-scale sampling exercise in the Burdekin catchment of north Queensland,
Australia. We highlight the robustness of our design through a simulation study where up to 50% of
target sites may be inaccessible.

Crown Copyright & 2014 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Historically, soil maps have been compiled by qualitative
delineation of soil boundaries based on conceptual understanding
of soil-formation factors (Jenny, 1941). This implicit understanding
is usually developed through sampling of the soil landscape in
question. The collection of soil samples is typically resource-
intensive and expensive; thus it is important for the sampling
programme to be conducted as efficiently as possible, to gain the
most information for the least cost. Traditional soil surveys use
purposive sampling where data are collected at locations consid-
ered to be typical of the soil- or map-unit being quantified (Hewitt
et al., 2008). The method is commonly employed in medium- to
small-scale surveys (e.g., 1:25,000–1:250,000 scale) and relies
heavily on the personal judgement and experience of the surveyor.

In the current working environment, with increasing demand
for soil information often accompanied with reductions in field-
sampling budgets, there is a strong interest in applying digital soil
mapping (DSM) techniques (McBratney et al., 2003) to enhance
the efficacy of the soil-mapping process. DSM techniques typically

generate statistical relationships between measured soil-profile
data and exhaustively sampled, easily obtainable raster surfaces of
covariates (e.g., remote sensing data, a digital elevation model and
its terrain derivatives, geology, land use). Inferences about soil
properties at new locations are based on the model, which
produces quantitative estimates of soil properties and their asso-
ciated error (Viscarra Rossel and Chen, 2011).

Latin hypercube sampling (LHS) is a sampling technique that
marries the purposive sampling of traditional soil survey, and
the numerical ideas that underpin DSM. LHS was proposed by
McKay et al. (1979) as an efficient way to reproduce an empirical
distribution function. Helton and Davis (2003) traced the historical
development of LHS. In essence, the idea is to divide the empirical
distribution function of a variable, X, into n equiprobable, non-
overlapping strata, and then draw one random value from each
stratum. For k variables, X1,X2,…,Xk, the n random values drawn for
variable X1 are combined randomly with the n random values
drawn for variable X2, and so on until n k-tuples are formed, i.e.,
the Latin hypercube sample (Iman and Helton, 1988). LHS assumes
that the k variables are independent, and so extensions that
account for correlation have been proposed (Iman and Conover,
1982; Stein, 1987). LHS was readily adopted by the simulation-
modelling community as a computationally feasible way to assess
the uncertainty of model output, given the empirical distribution
functions used as input; indeed, Iman and Helton (1988) showed
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that LHS outperformed alternative approaches to uncertainty
analysis. Notable soil-related applications of LHS include: simula-
tion of random fields (Pebesma and Heuvelink, 1999) evaluating
the probability that cadmium exceeds its contamination threshold
(Van Meirvenne and Goovaerts, 2001; Brus et al., 2002); and
quantifying the uncertainty of the predictions of pedotransfer
functions (Minasny and McBratney, 2002).

The application of LHS most relevant to this study is the design
of a soil-sampling scheme in the presence of ancillary information.
Minasny and McBratney (2006) blazed a trail with a method they
called conditioned Latin hypercube sampling (cLHS). They rea-
soned that ancillary information should be used to determine soil-
sampling locations, provided that it is cheaply obtained, spatially
exhaustive, and plausibly related to soil variability. The aim of
cLHS is to geographically locate soil samples such that the
empirical distribution functions of the ancillary information asso-
ciated with the samples are replicated, with a constraint that each
k-tuple of ancillary information has to occur in the real world.
The constraint necessitates conditioning of the Latin hypercube
sample. Conditioning is achieved by drawing an initial Latin
hypercube sample from the ancillary information, then using
simulated annealing to permute the sample in such a way that
an objective function is minimised. The objective function of
Minasny and McBratney (2006) comprised three criteria: (i) the
match of the sample with the empirical distribution functions of
the continuous ancillary variables; (ii) the match of the sample
with the empirical distribution functions of the categorical ancil-
lary variables; and, (iii) the match of the sample with the
correlation matrix of the continuous ancillary variables. The cLHS
algorithm has been widely applied (Lin et al., 2009; Kidd et al.,
2012; Worsham et al., 2012; Louis et al., 2014; Taghizadeh-
Mehrjardi et al., 2014).

Modifications to cLHS have previously been proposed. Minasny
and McBratney (2010) have proposed one modification to better
sample the edges of the multivariate distribution of the covariates.
Roudier et al. (2012) and Mulder et al. (2013) both demonstrated
how the cLHS objective function can be modified so that site
accessibility is also considered, although it must be pointed out
that these modifications do not guarantee accessibility, only
increase its probability.

However, unaddressed impracticalities of the approach remain.
Cambule et al. (2013) criticised DSM techniques, including cLHS, as
being impractical and prohibitively expensive in large regions with
access difficulties due to lack of roads or difficult terrain. They also
showed that models built on limited data from within accessible
regions can be successfully used to predict soil properties in
similar but inaccessible regions. Thomas et al. (2012) warned
about the need for sensibly chosen ancillary information when
using cLHS. Furthermore, they criticised the inflexibility of cLHS,
because it does not provide any alternative when the soil surveyor
has taken the trouble of travelling to a site, only to find that the
prescribed sampling location is inaccessible.

1.1. Flexible Latin hypercube sampling

Our goal is to describe extensions to the cLHS method when
parts of the survey area are known to be inaccessible prior to
sampling. Furthermore, we wish to choose target sites that are
more easily accessible than ones that are not and we wish to take
prior information into account when selecting new sites to sample
from. Finally, and most importantly, we also aim to make cLHS
more flexible by highlighting how to choose an alternative site in
an objective manner when a particular primary target site is found
to be inaccessible when one attempts to visit it. It is important to
consider these issues because we may be sampling in large remote
areas where travel is restricted due to time and safety constraints.

The goal of cLHS is to optimally sample the covariate space of
the region of interest. Ideally, the histograms of the covariate
values for the target sites should look the same as histograms of
the covariate values for the entire region. We can choose target
sites to achieve this but inaccessibility means that the histograms
of the covariate values for the sites actually sampled may be quite
different to the histograms of covariate values for the target sites.

To explore this issue a little further it may help the reader to
consider six different covariate spaces as follows:

(1) the covariate space associated with the region of interest;
(2) the covariate space associated with the subset of the region

that is accessible to sampling;
(3) the covariate space spanned by sites previously sampled;
(4) the covariate space spanned by the target sites;
(5) the covariate space spanned by the collection of target sites

and previously sampled sites; and
(6) the covariate space spanned by all sampled sites (new and

previously sampled sites).

The covariate spaces at positions 1 and 4 in our list are the ones
considered in cLHS. When there are no previously sampled sites
and all target sites are successfully visited then the covariate
spaces at positions 4 and 6 are identical. Depending on the terrain
and remoteness of the landscape in question, much of the target
region may be inaccessible in all but the most well-funded soil
surveys (Cambule et al., 2013). Outside of single-property (Vašát et
al., 2010) or small-area surveys (Lacoste et al., 2014), the target
sites chosen for sampling are never perfectly sampled (Kidd et al.,
submitted for publication). Kidd et al. (submitted for publication)
reported failing to reach over 40% of target sites in a large cLHS-
based study. As such, the spaces at positions 5 and 6 may be quite
different from each other, when they should look like the space at
position 1.

The algorithm of Minasny and McBratney (2006) does not
distinguish between 1 and 2, makes no provision for the inclusion
of 3 (thus ignoring 5) and does not build any robustness into the
design to try to ensure that 5 and 6 are as close as possible. Our
goal is to select target sites from the subset of the region that is
accessible to sampling. We will choose these target sites to match
space 5 to space 1 as best we can. We also propose a method to
help ensure that we match 6 to 1 by objectively ranking alter-
native sites close to each target in case some prove to be
inaccessible on the day of sampling.

2. Methods

2.1. Study area

The method presented in this paper was developed as part of a
project studying soil erosion vulnerability in the watersheds
flowing to the Great Barrier Reef (GBR). The health of the GBR,
off the coast of northern Queensland, Australia, is the subject of
immense ecological concern. Sediment-laden run-off from agri-
cultural land is considered to be a key factor that influences the
quality of water arriving to the GBR (Wooldridge, 2009; Brodie et
al., 2013). Catchment-scale modelling of the lands that drain into
the GBR has indicated that the Burdekin catchment (with an area
of 12.8 million ha) is the largest source of this sediment, exporting
about 4 Tg per year or 29% of the total average annual load (Kroon
et al., 2010).

The Burdekin is dominated by cattle-grazing of natural vegeta-
tion across the majority of the catchment. Past mapping and
sampling programmes (Fig. 1) have provided a rich but patchy
legacy dataset of site and polygon mapping information for
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