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a b s t r a c t

The measurement of Very Low Frequency Electromagnetic (VLF-EM) is important in many different
applications, i.e, environmental, archeological, geotechnical studies, etc. In recent years, improving and
enhancing VLF-EM data containing complex numbers (bivariate) was presented by several authors in
order to produce reliable models, generally using univariate empirical mode decomposition (EMD).
Applying univariate EMD separately on each data is problematic. This results in a different number of
misaligned Intrinsic Mode Functions (IMFs) which can complicate the selection of some IMFs for
denoising process. Thus, a filtering method based on the multivariate empirical mode decomposition
(MEMD) approach to decompose simultaneously bivariate data is proposed. In this paper we address
two issues by employing the recently introduced noise assisted MEMD (N-A MEMD) for improving
bivariate VLF-EM data. Firstly, the N-A MEMD to decompose bivariate measurement of the VLF-EM data
into IMFs and a residue is defined as VLF-EM signal or unwanted noise. Secondly, the proposed method
is used to enhance VLF-EM data and to reject unwanted noise. Finally, the proposed method is applied to
a synthetic data with two added sinusoids. To demonstrate the robustness of the N-A MEMD method,
the method was tested on added-noise synthetic data sets and the results were compared to the
Ensemble EMD (EEMD) and Bivariate EMD (BEMD). The N-A MEMD gave more robust and accurate
results than the EEMD and BEMD methods and the method required less CPU time to obtain the IMFs
compared to EEMD. The method was also tested on several field data sets. The results indicate that the
filtered VLF-EM data based on the N-A MEMD make the data easier to interpret and to be analyzed
further. In addition, the 2D resistivity profile estimated from the inversion of filtered VLF-EM data results
was appropriate to the geological condition.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Very-Low Frequency method is one of the electromagnetic
geophysical methods that is extensively used in environmental
(Al-Tarazi et al., 2008; Kaya et al., 2007; Monteiro Santos et al.,
2006), archeological studies (Abbas et al., 2012), and geotechnical
studies (Sharma et al., 2010), to estimate ore deposits (Bayrak and
Şenel, 2012; Eze et al., 2004), to identify faults (Gürer et al., 2009),
underground rivers (Bahri et al., 2008; Neumann et al., 2009;
Warnana and Bahri, 2004), etc. VLF-EM data (inphase and quad-
rature components) is usually interpreted qualitatively (Fraser
filter and Kharous and Hjelt filter) and quantitatively (inversion).

The data is complex, where inphase data is the real part while
quadrature data is the imaginary part, which can be called bivariate
data. The processing (and inversion) results depend on the quality of
the data which is usually degraded by nonlinear and non-stationary
noises which cannot be rejected using linear methods.

Thus, previous researchers (Jeng et al., 2007) use the empirical
mode decomposition (EMD) for non-stationary data analysis,
which decomposes VLF-EM data (in-phase and quadrature) into
a number of oscillatory modes, termed intrinsic mode functions
(IMFs). Because decomposition results of EMD often contain mode
mixing, Lin and Jeng (2010) and Jeng et al. (2012) propose
ensemble EMD (EEMD) to decompose and denoise VLF-EM data.
Although EEMD is able to reduce mode mixing, EEMD brings out a
new problem, i.e., the residual noise is likely to remain in IMFs as a
consequence of adding noise directly to the data. Thus, some-
times the decomposition process using EEMD method is not fully
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reached (Rehman et al., 2013; Torres et al., 2011). Moreover, the
EMD and EEMD operate univariate signals and cannot handle
multivariate data (bivariate or complex data), thus they are applied
separately to the inphase and quadrature components. Because in-
phase and quadrature data include bivariate signals, separate
analyses of both data will crucially ignore any mutual information
(Mandic et al., 2008), i.e, tilt angle parameter. Analysis of multi-
variate data using univariate EMD may result in mode misalign-
ment (Hu and Liang, 2011; Rehman and Mandic, 2011). This term is
used to describe a condition, where, similar multivariate IMFs have
different frequency modes (Rehman and Mandic, 2010a).

Several methods to analyses bivariate data have been proposed,
such as complex EMD (CEMD) (Tanaka and Mandic, 2007), rotation-
invariant EMD (RI-EMD) (Altaf et al., 2007), bivariate EMD (BEMD)
(Rilling et al., 2007), turning tangent EMD (Fleureau et al., 2011a), and
extended EMD (X-EMD) (Fleureau et al., 2011b). The problem of
bivariate data decomposition using EMD approaches are mode
mixing and mode misalignment (Rehman and Mandic, 2011).
To reduce these problems, Rehman and Mandic (2011) proposed a
different method, called noise assisted multivariate EMD (N-A
MEMD), to improve IMFs at univariate and multivariate data. The
N-A MEMD method uses the multivariate EMD (MEMD) algorithm
(Rehman and Mandic, 2010a; Rehman et al., 2013). Even then, IMFs
decomposed by N-A MEMD gave better defined subband filters as
compared with EMD and EEMD (Mandic et al., 2013; Rehman and
Mandic, 2011).

Thus, in this work we used the N-A MEMD approach to remove
noise from VLF-EM data in order to improve and enhance VLF-EM
data. To do this, we used two steps. First, we used the MEMD to
bivariate VLF-EM data simultaneously to derive IMFs for each
variable. Secondly, we reconstructed the VLF-EM data by computing
the cumulative sums of the IMFs extracted by the MEMD. The
method is tested in synthetic data and applied to VLF-EM data fields
simultaneously collected in land-slide study and used to determine
the location of underground rivers and phosphate deposits.

2. VLF-EM

The VLF method utilizes military radio transmitters operating in
the frequency range of 15–30 kHz. A theoretical background of this
method has been extensively discussed in various literatures
(McNeill and Labson, 1993; Telford et al., 1990). The primary electro-
magnetic field of a radio transmitter (vertical electric dipole) has a
vertical electric field component (EPz) and a horizontal magnetic field
component (HPy) which propagates perpendicularly to the direction
of x (Fig. 1). At a distance greater than several free wavelengths from
the transmitter, the primary EM field components can be assumed as
horizontally traveling waves. HPy penetrates into the ground and
induces a secondary horizontal electric component (ESx) in buried
conductive structures with an associated magnetic field (HS). The
secondary magnetic field acquires horizontal and vertical compo-
nents. This secondary EM field has parts oscillating in-phase and
quadrature with the primary field. The intensity of the secondary EM
field depends on the conductivity of the ground.

The VLF-EM method measures the resultant local horizontal and
vertical magnetic field components with two orthogonal induction
coils. The local resultant magnetic field HR is the superposition of
the primary field HP and secondary field HS, where HP⪢HS. In the
presence of an underground conductor, the total VLF field is elliptically
polarized. Furthermore, results of the VLF-EM are the inphase (real)
and quadrature (imaginary) parts of the ratio (HRz/HRy). The real and
imaginary components are expressed as a percentage of the total VLF
transmitter's primary field. The real part of the tipper is sensitive to
low resistivity bodies while the quadrature part of the tipper is

sensitive to variations of the earth electrical properties (Monteiro
Santos et al., 2006).

Generally, interpretation of VLF-EM can be done through
qualitative and quantitative approaches. Qualitative interpretation
commonly used Fraser filter (Fraser, 1969) or K–Hjelt filter (Karous
and Hjelt, 1983) to identify the location (lateral) of the resistive
and conductive zones while quantitative interpretation used
inversion method to derive 2D subsurface resistivity. Monteiro
Santos et al. (2006) developed a software (Inv2DVLF) for quanti-
tative interpretation of single-frequency VLF-EM data inverting
the tipper data with a 2D regularized inversion approach (Sasaki,
2001). The code was developed based on a forward solution using
the finite element method (FEM).

3. Univariate emprical mode decomposition (EMD)

EMD is a fully adaptive method for multiscale analysis of non-
linear and non-stationary real signals (Huang et al., 1998). The first
objective of this algorithm is to decompose univariate signals. EMD
decomposes the data into a finite number of simple orthogonal
oscillatory modes called intrinsic mode functions (IMFs) which fulfill
two conditions: (1) the number of extrema and the number of zero
crossings must be equal or differ at most by one and (2) the mean
value of the local maxima (upper envelopes) and local minima (lower
envelope) is zero in everywhere.

The EMD algorithm decomposes the original signal into IMFs
and a residue. For real signals x(t), the standard EMD estimates a
set of N IMFs fciðtÞgNi ¼ 1 and a monotonic residue signal r(t), so that

xðtÞ ¼ ∑
N

i ¼ 1
ciðtÞþrðtÞ ð1Þ

The EMD is highly adaptive and consequently can satisfactorily
descript the time-frequency characteristics of a signal. EMD algo-
rithm uses an iteration process to derive the IMFs. An iteration
process called sifting process is employed. For example, a sifting
process for obtaining the first IMF from signal x0(t) includes the
following steps (Huang et al., 1998):

(1) Estimating all local minima and local maxima of x0(t).
(2) Interpolating all the local minima to obtain the lower signal

envelope and then interpolating all the local maxima to
estimate the upper signal envelope.

Fig. 1. EM field distribution for the VLF method in polarization with theoretical
signals over a vertical conductive dike (Bosch and Müller, 2001).
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