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a b s t r a c t

Both for mapping and for estimating spatial means of an environmental variable, the accuracy of the

result will usually be increased by dispersing the sample locations so that they cover the study area as

uniformly as possible. We developed a new R package for designing spatial coverage samples for

mapping, and for random sampling from compact geographical strata for estimating spatial means. The

mean squared shortest distance (MSSD) was chosen as objective function, which can be minimized by

k-means clustering. Two k-means algorithms are described, one for unequal area and one for equal area

partitioning. The R package is illustrated with three examples: (1) subsampling of square and circular

sampling plots commonly used in surveys of soil, vegetation, forest, etc.; (2) sampling of agricultural

fields for soil testing; and (3) infill sampling of climate stations for mainland Australia and Tasmania.

The algorithms give satisfactory results within reasonable computing time.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that, both for mapping and for estimating
spatial means of an environmental variable, the accuracy of the
result will usually be increased by dispersing the sample locations
so that they cover the study area as uniformly as possible
(Cochran, 1977). A simple method to achieve this is sampling on a
regular grid. For mapping a variable sampled on a grid, the
maximum prediction error variances occur at the centers of the
grid cells, and are approximately equal. However, at the border of
the study area the prediction error variance (kriging variance)
increases considerably when there are no measurements outside
the study region that can be used to predict the values near the
border. Of course this border effect can be reduced by shifting the
sample locations towards the edges, but this goes hand in hand
with an increase of the kriging variance at the centers of the grid
cells. This raises the question, should we relax the constraint of a
regular pattern of sample locations to obtain the best result? This
question emerges with greater concern when the area is
irregularly shaped, or has enclosures that cannot be sampled
(built-up areas) or need not be mapped.

A regular pattern of sample locations can also be too restrictive
when we have measurements in the study region collected in a
former survey, which we want to use in the geostatistical

interpolation and which do not fit into a regular grid. The
previous measurements may have left large spaces unsampled,
which we would like to fill in because there the greatest gain in
accuracy can be achieved. When we expect regular grid sampling
to be suboptimal under such practical constraints, we must design
in some way an irregular pattern that will lead to more precise
spatial predictions than the regular grid. Several methods for
optimization of the pattern of sample locations have been
described in the literature. The methods differ with respect to
the objective function, and in the way the method searches for the
optimal pattern (optimization algorithm). In geostatistical sam-
pling, an objective function explicitly defined in terms of the
prediction error variance is minimized, usually the average or
maximum kriging variance (Sacks and Schiller, 1988; van
Groenigen et al., 1999). This requires knowledge of the variogram,
and in many situations this variogram is unknown, or at least
characterized by uncertainty. In spatial coverage sampling, an
objective function is defined in terms of the distance between the
sample locations and the nodes of a fine interpolation grid (Royle
and Nychka, 1998), and a variogram is not needed.

In a design-based sampling strategy for estimating the spatial
mean, spreading of the sample locations can be achieved by
sampling on a randomly placed regular grid. There are two
disadvantages of random grid sampling. First, estimation of the
sampling variance is cumbersome (D’Orazio, 2003). This is
because we do not have independent replicates of the sample:
the grid can be considered as one ‘cluster’ of sample locations.
Second, in general the number of sample locations with random
grid sampling is not fixed, but varies between randomly drawn
samples. We may choose the grid spacing such that on average
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the number of sample locations equals the required (allowed)
number of sample locations, but for the actually drawn sample,
this number can be a few locations smaller or larger. A random
number of sample locations may be undesirable, for instance,
when this size is prescribed in regulations. An alternative is
stratified random sampling, using geographically compact sub-
areas as strata. By using these compact sub-areas as strata, spatial
clustering of the sample locations can be avoided, which usually
increases the accuracy of the estimated spatial mean. The central
question then is how to split the area into sub-areas that are
geographically as compact as possible.

Although methods and software exist for designing spatial
coverage samples (Royle and Nychka, 1998), we decided to
develop a new R package (R Development Core Team, 2010).
The main reason is that there is a clear need for a simple,
straightforward and generally available method that can be used
both for designing spatial coverage samples for mapping, and for
constructing compact geographical strata for estimating spatial
means.

We have chosen the mean squared shortest distance (MSSD) as
objective function. It has been shown before that minimizing the
MSSD leads to spatial coverage samples with a mean ordinary
kriging variance (MOKV) only marginally larger than that of
geostatistical samples obtained by directly minimizing the MOKV
(Brus et al., 2007). Another attractive property of the MSSD as
objective function is that it can be minimized by k-means
clustering, which is a well-developed branch of cluster analysis,
both theoretically and computationally. It can be shown that, in
the case where all cluster centers coincide with the cluster
centroids, minimizing the trace of the pooled within-cluster
variance (tr(W)) is equivalent to minimizing the MSSD (see
Section 2). Note that we distinguish cluster centers from cluster
centroids. A cluster center is the location to which the distances of
the objects are calculated, whereas a cluster centroid is the
multivariate average of the objects allocated, at a given stage in
the clustering process, to that cluster. Existing software for
k-means clustering is not fully satisfactory for sampling purposes.
First, this software has not all the functionality we need, such as
the possibility of using prior sample data (infill sampling), and
forming clusters of equal size. Clusters of equal size are attractive
because, when used as strata in random sampling, the sampling
design is self-weighting, i.e. the unweighted sample mean is an
unbiased estimator of the spatial mean. The freeware program
FuzMe (Minasny and McBratney, 2002) uses a modified fuzzy
k means algorithm to obtain clusters of equal size. Although the
FuzMe program offers many interesting features for multivariate
fuzzy cluster analysis, it does not guarantee clusters of equal size
and is therefore not suitable for our needs.

Second, existing software is generally not directly linked with
sampling, and several data processing activities related to
sampling, such as the discretization of the study area, random
selection of sampling locations from the final clusters, and design-
based or model-based inference are not supported.

The aim of this paper is to present and illustrate a new R
package called spcosa, that can be used for designing spatial
coverage samples and for partitioning the study area into
geographically compact blocks to be used as strata in random
sampling. R is a programming environment for data analysis and
graphics which has become extremely popular during the last
decade. Since it is freely available and offers many add-on
packages for spatial data analysis and visualization, it seems the
natural language of choice for implementing our spatial coverage
sampling algorithms.

This paper is organized as follows. In Section 2 we describe two
k-means algorithms, one for unequal area partitioning and one for
equal area partitioning. Section 3 describes three applications of

the proposed sampling method, with a spatial extent ranging
from a sampling plot of tens of square meters to a whole
continent. The sampling method is discussed in Section 4, and
several conclusions are drawn.

2. K-means algorithms

As stated in Section 1, spatial coverage samples can be
designed by minimizing tr(W). This can be achieved by k-means
cluster analysis (Hartigan, 1975), originally developed in the
context of multivariate analysis. In our spatial application of this
method, the objects are the cells of a fine grid, and the
classification variables are the geographical co-ordinates of the
midpoints of these cells, as explained in more detail by Brus et al.
(1999). In k-means clustering, starting from an initial solution, the
cells are iteratively re-allocated to clusters, and their centroids
re-computed, until some stopping criterion is satisfied. The result
of this procedure consists of a partition of the grid and the
associated cluster centers. The clusters can be used as strata in
stratified random sampling, whereas the cluster centers can
directly be used as sample locations in a model-based sampling
strategy.

Several k-means algorithms exist, see for instance MacQueen
(1967), Lloyd (1982), Hartigan and Wong (1979) and Ding and He
(2004). We defined and implemented two algorithms. In algo-
rithm 1 only ‘transfers’ take place. By transfer we mean a re-
allocation of a cell (u) from its present cluster (A) to another
cluster (B). This algorithm is suitable for unequal area partition-
ing, possibly in the presence of prior points. The algorithm is
described in Section 2.1. In algorithm 2 only ‘swops’ take place. A
swop is a simultaneous transition of two cells, u from A to B, and v
from B to A. This algorithm is suitable for equal area partitioning.
Algorithm 2 is described in Section 2.2.

2.1. K-means algorithm 1 for unequal area partitioning

Step 1a: Initial partition. If there are n prior sample points, then
these points act as n fixed cluster centers in the following. If
k additional sample points are required, then select at random
k cells from the grid. Their midpoints act as k variable cluster
centers. Create an initial solution in the form of a partition by
allocating the unselected cells to the nearest (fixed or variable) of
the n+k cluster centers.

Step 1b: Initial cluster centers. Replace each of the k variable
cluster centers by the centroid of the cluster around it: x1 � � �xk

(k two-dimensional vectors).
Step 2: Re-allocation of the first cell. Determine if the first cell

(with co-ordinate vector u) should be transferred from its initial
cluster (say A) to the first of the other n+k�1 clusters (say B), as
follows.

Calculate the squared distances from u to xA and to xB,
respectively, d2(A,u) and d2(B,u). If d2ðA,uÞ4d2ðB,uÞ, then the
transfer is carried out and, as far as they are not fixed, the two
cluster centers are replaced by the centroids of the surrounding
clusters. If not, then the transfer is not carried out.

Step 3: Iteration. If the transfer in step 2 was not carried out,
then determine in the same way if u should be transferred to the
second of the other n+k�1 clusters. If not, then do the same for
the third cluster, and so on. When u has been transferred or when
it has been determined that it should not be transferred to any
cluster, then go to the second cell and do the same as with the
first one. Thereafter continue with the third cell, and so on, until
all cells have been addressed. After that, start again from the
beginning (a new cycle), and continue until none of the cells are
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