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a b s t r a c t

A neural network model is proposed for reconstructing ocean salinity profiles from sea surface
parameters only. The method is applied to the tropical Atlantic. Prior data mining on a complete dataset
shows that latitude and sea surface salinity are the most relevant surface parameters in the prediction of
salinity profiles. A classification using a self-organizing map learned on a large multivariate dataset is
able to retrieve the most probable vertical salinity profiles from the surface parameters only. Both in situ
and modelled oceanic data are used to evaluate the results. The reconstruction misses some salinity
features in areas with high time-space variability in which the limited available dataset was unable to
provide the complete variability ranges during the learning process. However, apart from these
restricted areas, the salinity profiles are reproduced with correlations greater than 0.95 for most of
the profiles of the test set.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Geophysical systems (ocean, atmosphere, etc.) have many
complex properties due to interactive processes governed by
non-linear laws. An important aspect of physical sciences is the
inference of physical parameters from observations. In general, the
laws of physics permit the computation of data values from
physical variables through a model (the direct model). This is
called the forward problem. The inverse problem aims at estimat-
ing the physical variables and/or the parameters of the direct
model from a set of measurements through the use of an inverse
model (Snieder and Trampert, 1999). While the forward problem
has (in deterministic physics) a unique solution, the inverse
problem may not (Tarantola, 2005), if the model is non-linear.
Inverse problems of geophysics are therefore generally ill-posed in
the sense of Hadamard (Starostenko and Zavorot'ko, 1996;
Tarantola, 2005), i.e their solution is no more a single-valued
function. In an ill-posed inverse problem, a classical least-square
minimum distance or maximum likelihood solution may not be
uniquely defined. Moreover, the sensitivity of such solutions to slight
perturbations in the data is often unacceptably large. Alternative

methods based on knowledge related to the observations through a
learning process have become widely developed and used. Our
approach belongs to these latter methods.

Our study aims at retrieving ocean vertical salinity profiles
from ocean surface measurements. The density of satellite obser-
vations has permitted a quasi-continuous observation of the global
ocean surface. The two-dimensional images provided by satellite
sensors contain information on physical or biogeophysical sea-
surface variables but not directly on their associated vertical
profiles. Inverting the sea-surface data remotely sensed by satellite
to obtain the vertical profiles of biogeophysical variables requires
inverting a numerical modelling of their relationships. The diffi-
culty is that it is found experimentally that several different
profiles might correspond to the same surface measurements.
Moreover, as is described in Section 4, the problem is highly
under-determined, the profile data being much larger in quantity
than the associated surface data. Such inverse models are, how-
ever, often faced with problems of non-linearity, complexity and
incomplete knowledge of the mechanisms that govern the forma-
tion of these profiles. Therefore the reconstruction of the vertical
profiles from the surface information often leads to an ill posed
problem, as explained here above. In this paper we propose a
statistical approach that addresses this difficult inverse problem;
i.e. the determination of the ocean 3-D structure from surface data,
using advanced statistical methods.

Water exchanges in the global hydrological cycle are deter-
mined by complex mechanical and thermodynamic constraints
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that form the basis of the climate system dynamics. Ocean salinity
(S) is one of the variables in this cycle which is the most difficult to
observe (U.C. Office, 2007), especially in the Atlantic, where it
presents a strong spatial variability. S is also an indicator of the
intensity and location of water exchange (evaporation and pre-
cipitation) at the ocean–atmosphere interface (Dessier and
Donguy, 1994). Like temperature (T), S has an impact on the water
density, and therefore any integrated quantity depending on it,
such as sea-surface height (SSH), which is now commonly pro-
vided by satellite altimetry. Therefore any algorithm and model
linking easy-to-observe surface parameters, such as SSH, sea-
surface temperature (SST), and sea-surface salinity, to salinity
profiles would be a valuable asset in providing information to
centres studying ocean and weather variability.

A lot of inverse methods, based on in situ measurements, have
already been proposed in order to solve this problem; they differ
by the information used, the statistical method applied and the
area where their performances were tested. Among them, we may
mention:

� Agarwal et al. (2007) reconstructed subsurface S profiles in the
Indian Ocean from January 2000 to July 2004. They used a
combination of Empirical Orthogonal Function (EOF) analysis
and a genetic algorithm connecting an S profile to the SST and
the SSS.

� Maes and Behringer (2000) estimated the vertical variability of
the S field by using a weighted least-square procedure. They
computed vertical modes of T and S provided by an EOF
analysis of in situ measurements, SSS climatology, remotely
sensed sea level anomaly (SLA) and SST. The method was tested
on two Tropical Atmosphere-Ocean (TAO) moorings along
1651E in the western Pacific Ocean for the period 1993–1998,
giving a correlation between observed and estimated time-
series of about 0.7 in the equatorial band.

� Thacker (2008) proposed an empirical relationship between S
and T with the aid of local regression. His strategy was to
estimate the T�S relationship, at each depth level in sixteen
201�51 sub-regions of different latitude and longitude, by a
linear regression. The method applied a non-linear fit to the
data since it dealt with the square of T together with T. Local
regression models were applied to the South Atlantic.

� Guinehut et al. (2012) described an observation-based
approach that combined T profiles, S profiles, satellite altimeter
sea-level anomalies and satellite SST using statistical methods.
In a first step they derived synthetic three-dimensional tem-
perature fields from altimeter and sea-surface temperature
observations, and three-dimensional salinity fields from alti-
meter observations and temperature fields, through multiple/
simple linear-regression methods. The second step of their
method consists in combining the synthetic fields with in situ
temperature and salinity profiles using an optimal interpola-
tion method.

These examples show that each inversion uses part of the available
surface parameters and/or introduces the geographical coordi-
nates. All of them dealt with statistical approaches that are
different from each other. Most of the time, they considered
actual data available in different areas of the ocean. Doing so,
the datasets are often not large enough to obtain a fine-tuning of
the inverse method. In the present paper we propose to broaden
the above approaches by associating the S profiles with all
available surface parameters. This is done with the help of an
automatic classification-based methodology consisting in Koho-
nen self-organizing maps (SOM). We first focus our study on
model data that allow the large database necessary to implement
the method. In order to validate the approach, we chose a

particular area (the tropical Atlantic) in which we have in situ
measurements.

This paper is organized as follows. Section 2 describes the
characteristics, in terms of oceanic features, of the tropical Atlantic
area where the experiences have been developed, together with
the datasets we used. The methodology is presented in Section 3.
Section 4 is devoted to the results and discussion, followed by the
conclusion, in Section 5.

2. Regional area and data descriptions

2.1. Regional characteristics

The Atlantic Ocean plays a key role in the thermohaline
circulation of the world ocean. It may be considered as the engine
of the famous conveyor belt characterizing the above-mentioned
thermohaline circulation. This “conveyor belt” results from the
fact that the Atlantic Ocean is the only major ocean open to the
north polar region (the Arctic) which allows significant cooling
of the surface water which therefore sinks in order to reach
its natural density level several hundred metres below the sea
surface. The conveyor belt therefore constitutes the major
oceanic contribution to the climate variability through the high-
latitude convection occurring in the Norwegian Sea (Gordon,
1986). The variability of the tropical Atlantic impacts that of
other regions: for example, northeastern Brazil, northwestern
Africa, Central America and the Caribbean (Munoz et al., 2012).
The conveyor belt provides the connection between the
tropical Atlantic, the tropical Pacific (Losada et al., 2010)
and the Indian Ocean (Kucharski et al., 2009). The tropical
Atlantic Ocean is therefore an attractive area for oceanic climate
studies.

The Atlantic Ocean has the highest S values (437). These
maximum-salinity water areas (MSW) occupy the subtropical
areas, the S values in the equatorial/tropical zone are lower, at
about 351north and south of the equator and are maintained
principally by evaporation. These MSW, advected poleward at the
surface and subducted at depth and advected equatorward by the
oceanic circulation, constitute key features of the conveyor belt
dynamics.

Furthermore, the vertical variability of S in the tropical Atlantic
consists mainly of two homogeneous layers separated by a strong
salinity gradient, the so-called halocline.

The precise determination of the halocline depth is difficult,
although it is a main contributor to local air–sea interactions
through the barrier-layer phenomena. These barrier-layers can
block local air–sea interactions and lead again to climate variations
(Tanguy et al., 2010).

Even though the tropical Atlantic has been recognized as an
important region in the Earths coupled ocean–atmosphere climate
system, it has been challenging to model it satisfactorily by
coupled climate models (Munoz et al., 2012), especially to simulate
its S variability. Apart from the forcing uncertainties (river run-off,
evaporation, precipitation, wind stress) this difficulty is mainly
due to recurrent and unstable climatic features localized in some
particular areas (Fig. 1) such as:

� the MSW zones around 151S and 251N;
� the region of the westward-flowing surface South Equatorial

Current (SEC) and the eastward-flowing subsurface Equatorial
UnderCurrent (EUC) around the equator;

� the Inter-Tropical Convergence Zone (ITCZ) and the eastward-
flowing surface Northern Equatorial CounterCurrent (NECC)
area around 51N, southward of the westward-flowing Northern
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