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a b s t r a c t

The classification of remotely sensed images such as aerial photographs or satellite sensor images for

deriving ecosystem-related maps (e.g., land cover, land use, vegetation, soil) is generally based on

clustering of spatial entities within a spectral space. In most cases, Boolean logic is applied in order to

map landscape patterns. One major concern is that this implies an ability to divide the gradual

variability of the Earth’s surface into a finite number of discrete non-overlapping classes, which are

considered to be exhaustively defined and mutually exclusive. This type of approach is often

inappropriate given the continuous nature of many ecosystem properties. Moreover, the standard data

processing and image classification methods used will involve the loss of information as the continuous

quantitative spectral information is degraded into a set of discrete classes. This leads to uncertainty in

the products resulting from the use of remote sensing tools.

It follows that any estimated ecosystem property has an associated error and/or uncertainty of

unknown magnitude, and that the statistical quantification of uncertainty should be a core part of

scientific research using remote sensing. In this paper we will review recent attempts to take explicitly

into account uncertainty when mapping ecosystems.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Mapping and modeling the complexity of ecosystems and their
changes over time is a key issue in spatial ecology and biogeo-
graphy. Remote sensing has been acknowledged as one of the
most powerful methods to map abiotic and biotic components of
ecosystems (including land cover, land use, vegetation, soils) and
estimate their changes over time.

The mechanism used to create maps based on remote sensing
data is to derive classification algorithms to label pixels. Formally
speaking, let S¼{1,2,3,y,n} be a set of pixels; clustering algo-
rithms seek to find out the most probable/possible partition of S.

Quintana (2006) provides a detailed mathematical review of
clustering algorithms. In most cases classes are derived relying
on Boolean rules where classes are sharply defined and pixels are
generally associated to a class on the basis of relative spectral
similarity.

Regardless the method being used (raster-based or object-
oriented classification), the assumptions for carrying out classifi-
cation are associated with one major drawback: classes are
mutually exclusive with discrete boundaries separating each
other. Hence, processing and classifying images can result in a
substantial loss of information, due to the degradation of
continuous quantitative information into discrete classes
(Foody, 2000; Palmer et al., 2002).

Many authors have attempted to produce better representa-
tions of the true complexity using improved methods for
discrete boundaries, e.g., using multi-scale segmentation based
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on hierarchical patch dynamics (e.g., Blaschke, 2010). Nonethe-
less, it has been widely demonstrated in ecological studies that
habitats vary in space in a continuum manner (Rocchini, 2010, for
a review) and, in some cases, a standard discrete boundary
provides an unrealistic representation (Foody, 1999). As an
example, Fig. 1 represents an aerial photo (1 m spatial resolution)
of a mountainous landscape (Monte di Mezzocorona and Valle
dell’Adige, Trentino, Northern Italy, centre scene coordinates, l
1110700200E, f 4611303600N, WGS84 datum, acquisition date May
2006, Fig. 1A). For each unit (e.g., a pixel or a polygon) assigning a
membership (m) approaching 1 to each single class is unrealistic.
As an example distinguishing grassland from shrubland in eco-
tones would be practically impossible (Fig. 1B). On the other
hand, anthropic-dominated landscapes may show discrete bor-
ders among objects (e.g., fields versus roads). In this cases,
depending on the scale, discrete mutually exclusive classification
can be reliable (Fig. 1C). Similar examples considering different
habitat types can be found Wood and Foody (1989, based on
lowland heaths) and Rocchini (2010, based on Mediterranean
forests). Ahlqvist et al. (2003) and Comber et al. (2005) provide
robust critical reviews on the matter.

Regarding the aforementioned loss of information, classifica-
tion can implicitly degrade information which in turn results in
uncertainty in the data and related outcomes. The uncertainty
related to the classification process often remains hidden in the
output maps, thus it cannot be readily accounted for during
further analysis. For instance, maximum-likelihood classification
of remotely sensed data simply leads to pixel membership to each
class, while additional information generated during the classifi-
cation process, such as posterior probabilities, could be output
(Foody et al., 1992). Although some attempts exist that aim to
map and preserve this uncertainty for further analyses (e.g.,
Ohmann and Gregory, 2002; Ohmann et al., 2011), this issue
requires further attention.

According to Rocchini and Ricotta (2007) we will generally
refer to uncertainty as both (i) vagueness, namely the lack of
sharpness of relevant distinctions, and (ii) ambiguity, arising
from conflicting distinctions (discordance, Klir and Wierman,
1999). In this paper, we will review the progress made in
geosciences and ecology for taking explicitly into account uncer-
tainty when mapping ecosystems and related environmental
phenomena.

2. Uncertainty related to input data for ecosystem mapping

An accurate supervised classification of remotely sensed
images requires appropriate ground reference data which are
often derived from field training sites. There are many sources of
uncertainty in the training stage of a supervised classification,
such as class definitions, subjectivity of field data collection and
the mixed pixel problem.

Since plant species represent the bulk of habitat structure
(Chiarucci, 2007), training sites are often derived from plant
sampling-based field surveys, for which one of the main problems
lies in the definition of plant communities, an issue raised as early
as 1926 by Gleason (1926). A formal definition has not been and
will not be accepted globally (Chiarucci, 2007). Moreover, there is
an intrinsic difficulty in judging survey completeness (Palmer
et al., 2002). This is generally true for all observational sciences;
geosciences are not free from such uncertainty as a result of a
partial input (Henley, 2006).

There are a number of provoking papers dealing with pro-
blems in the discrimination of species in the field, including
operator bias (Bacaro et al., 2009), taxonomic inflation (Isaac
et al., 2004; Knapp et al., 2005) and more generally taxonomic
uncertainty (Guilhaumon et al., 2008; Cayuela et al., 2011), i.e.,
the subjectivity of field biologists in acquiring species lists which
is expected to increase error variance instead of obtaining
accurate information on field data.

The effect of imperfect species reference data have been
discussed mainly in relation to species distribution modeling
(Foody, 2011; Rocchini et al., 2011), in which labeling accuracy
together with sample size and pseudo-absence data may lead to
biased models of species distribution over space. The same
reasoning applies to input field data for generating ecosystem/
habitats maps.

Evidence exists about the possibility that abrupt classification
of vegetation types, especially at the species hierarchical level,
can present misleading or even erroneous results (Schmidtlein
and Sassin, 2004). This is due to the often continuous transition of
the vegetation assemblages due to changes in environmental
gradients (e.g., moisture) and self-organization in vegetation.
Alternative approaches like ordination methods aim to extract
major floristic gradients describing the variation of the assem-
blages as metric variables, thus still retaining the continuous

Fig. 1. An aerial photo (spatial resolution¼1 m, acquisition date: May 2006) of a mountainous landscape of Trentino (Monte Mezzocorona), Northern Italy (A). In case of

high heterogeneity (B) the membership to a defined class (e.g., classA¼woodland) is not exhaustive (high uncertainty). In case of a homogeneous landscape (C) the

membership to a defined class (e.g., classA¼crops) may be complete equaling 1. Similar examples can be found in Wood and Foody (1989) and Rocchini (2010).
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