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a b s t r a c t

Notwithstanding the numerous contributions that have been published on theoretical and practical

aspects of the management of compositional (constrained) data during the last thirty years,

in geochemistry most of the scientific papers in international journals continue to ignore their peculiar

features. In order to understand the reasons of the undervaluation of the effects of an incorrect choice of

the sample space and, consequently, an incorrect application of the distance concept, case studies of

comparison between methodologies will be presented and discussed. The aim is to evaluate the

differences in interpretation of geochemical processes affecting rocks, water and gaseous samples,

when the two different approaches, classical and compositional, are adopted. If we compare the results

of case studies following the two paths it is possible to evaluate which type of error (and consequences)

will affect our evaluations in geochemistry.

The presence of expected differences between the two approaches indicates that compositional data

analysis can be a way to see beyond the illusion due to the constrained space. However, the possibility

that the difference is tenuous in some situations, not revealed a priori, may be at the origin of the

unconscious choice of the classical approach. Is this condition which some researchers call ‘‘common

sense’’ frequently encountered in geochemistry? The paper is aimed to try to answer the proposed

question, and to understand the difficulty of diffusion of compositional data analysis even if now simple

tools of investigation, for different degrees of knowledge, are available.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The development of graphical and numerical tools to perform
compositional data analysis (CoDA) represents a benchmark
problem in geological sciences and, in particular, in computational
geochemistry. This discussion has long animated researchers
working in different fields and, notwithstanding that appropriate
tools are now available to correctly investigate the features of
compositional data, most of the published papers in the interna-
tional literature avoid facing this attractive question. Moreover,
people that are interested in managing compositional data in a
consistent1 mathematical and statistical framework, often have to
convince referees of the appropriateness of their methodology.
Answers such as ‘‘nature is stronger than closure’’ or ‘‘a good
geologist is able to recognise forced relationships from the natural
one’’ may be typical. Why is it so difficult to convince the
scientific community about the adoption of the CoDA approach?

Are the expected differences between results obtained by using
classical and compositional approaches able to convince us that a
way to see beyond the illusion due to the constrained space is to
take into account its geometry? Or the differences are usually so
tenuous, that the unconscious choice of the classical approach is
recognised as ‘‘common sense’’? The paper is aimed to try to
answer the proposed question and to understand the difficulty of
diffusion of compositional data analysis even if now simple tools
are available.

The first benchmark of the compositional data problem can be
considered the presence of the spurious correlations recognised by
Pearson (1897) affecting all data that measure parts of the same
whole, such as percentages, proportions, ppm and so on. His work
represented the first approach able to recognise that if X, Y and Z

are uncorrelated, then X/Z and Y/Z ratios, will not be uncorrelated.
Chayes (1960) found a mathematical demonstration of Pearson’s
work and showed that some of the correlations between the
components of the composition must be negative due to the sum
constraint, thus affecting interpretation of natural processes,
biased by this effect.

Even if natural data are often non-negative, ranging in a
sample space with a restriction to Rþ

D (they are only positive,
and variables move only on the positive parts of real space),
compositional data have a further restriction since they have been
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(Egozcue and Pawlowsky-Glahn, 2011) that is: (a) The relative character of the

information carried by the data is taken into account, (b) The models that are

compatible with the sample space and constraints do not need to be taken

additionally into account.
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scaled by the total of the components of the composition. This
important operation of standardization is fundamental in inter-
preting and comparing results obtained by experimental mea-
sures in geochemistry, since data are related to the same weight
(solid matrices) or volume (solutions and gaseous mixtures).
The consequence is that compositional data with D components
not only pertain to the positive part of RD but occupy a restricted
part of its axes, in general from 0 to the constant defined a priori.
In mathematical terms compositional data are represented as
pertaining to a sample space called the simplex SD:

SD
¼ x¼ ðx1,x2,xDÞ : xi40 ði¼ 1,2,DÞ,

XD

i ¼ 1

xi ¼ k
( )

ð1Þ

where k is a given positive constant, defined a priori and
depending on how the parts are measured. The key question here
is not to discuss the nature of compositional data, since they have
to be defined exactly in this way if we want to make comparisons
among cases, starting from the same baseline. The key question is
whether standard statistical analysis which assumes that the
sample space is RD with D dimensions, where all the values from
7N are generable and have a probability to be found in a
sampling process, is appropriate to represent the investigated
phenomena. In other words, in an olivine, a silicate mineral
represented by the formula (Mg, Fe)SiO2, it is known that Mg
and Fe substitute each other and that a rigorous stoichiometric
law governs the process characterised by the competition of two
ions for the same crystallographic site. It is also clear in this
framework that when Mg decreases, Fe tends to increase (com-
mon sense). However, the classical approach, that simply repre-
sents this phenomenon in a binary diagram, where abundance of
Fe and Mg are analysed in respect to each other, or versus Si
considered a common base, does not represent a coherent
geometry on which to base statistics, both descriptive and
inferential, and to propose models able to indicate how natural
phenomena work. In fact, considering compositional data as real
data, the hypothesis that it is possible to obtain negative contents
of Fe and Mg in a sampling process is considered as feasible. The
formulation of this hypothesis is frequently performed, even if
unconsciously, when a correlation coefficient is determined, or
some modelling of the linear pattern of the data on binary
diagrams is proposed. The probability of a negative concentration
may be low, but it is not possible to know its value in advance and
this also affects the determination of simple central tendency
statistics (mean) and variability measures (variance). Conse-
quently, as reported in Aitchison et al. (2000), it should be
obvious that with compositional data only the statements about
the ratios of the components are meaningful, since their use
respects the fundamental principle of scale invariance. This item
for a long time was indirectly recognised in geochemistry as is
testified by the common use of ratio diagrams. However, often
these diagrams were realised considering ratios with the same
denominator, for example X/Z and Y/Z ratios that, as reported by
Pearson (1897) were affected by spurious correlations.

In the statistical literature there is a long history of the search
for a solution to the statistical analysis of compositional data
(Aitchison and Egozcue, 2005). The main contribution to a solu-
tion is attributable to John Aitchison in the early 1980s (Aitchison,
1982) when he introduced the log-ratio approach using the
intuitive concept of difference associated with the features of
data. For example, the log-ratio approach was proposed to
capture the difference between 5% and 10% and that between
45% and 50%, difference equal to 5 in both cases in the Euclidean
real space. Following this approach, compositions are transformed
to move them into real space using a log-ratio transformation,
analysed by classical statistical methods, and results reported

back to the simplex, by using the correspondent inverse trans-
formation. A further key step was the recognition of the Euclidean
space nature of the simplex (Pawlowsky-Glahn and Egozcue,
2001). In this framework compositions can be represented by
their coordinates in the simplex with a suitable orthonormal
basis, leading to the ilr (isometric log-ratio) transformation
(Egozcue et al., 2003). Its use allow us to avoid the arbitrariness
of denominator choice related to the alr (additive log-ratio)
transformation and to the singularity of the clr (centered log-
ratio) transformation, the two transformations originally pro-
posed by Aitchison (1982).

In this paper the comparison of the results obtained for some
interesting compositional cases investigated by using the classical
and the log-ratio approach allows us to verify how the illusion to
see compositional data as real data may compromise our under-
standing of natural phenomena. To achieve this aim, the ilr

transformation was used to represent a composition as a real
vector. Even if the computation of ilr coordinates appears to be
complex, there are different rules on how to generate them
(Egozcue et al., 2003). The identification of balances, a particular
form of ilr coordinates (Egozcue and Pawlowsky-Glahn, 2005)
may simplify the adoption of this transformation. Balances,
reflecting the relative variation of two groups of parts, represent
a powerful tool for researchers to prove their geochemical
hypothesis, translating ideas on natural phenomena in numbers
moving in a coherent geometry. Balances in fact define coordi-
nates of the samples within an orthogonal system of axes, i.e.,
they are usual random variables in real space.

2. Working on coordinates: the ilr transformation of
compositional data and the balances approach

In statistics the real space Rk (k¼number of dimensions) is
assumed to be the natural sample space for a given set of
observations. Standard statistics have been developed in Rk using
its particular algebraic–geometric structure, which is commonly
known as Euclidean geometry. Linear algebra allows us to trans-
late standard statistics into any sample space, different from Rk,
if it has an Euclidean vector space structure. Definition of basic
operations in the simplex such as perturbation and powering,
with the associated norm and distance, permits us to analyse data
(Aitchison, 2001; Billheimer et al., 2001; Pawlowsky-Glahn and
Egozcue, 2001). In this framework, the procedure of the sequen-
tial binary partition to identify orthonormal coordinates, can be
adopted (Egozcue and Pawlowsky-Glahn, 2005). In a first step the
parts of the composition are divided into two groups: the parts of
the first group are coded by þ1 and the parts of the second group
are coded by �1. In this way the first coordinate describing the
balance between the þ1 and �1 parts is obtained. In the second
and following steps a previous group of parts is divided into new
groups, similarly coded by þ1 and �1 while the components that
are not involved are coded with a zero. The number of steps
required for all the groups to contain a single component is
exactly D�1, dimensions of SD. The whole procedure can be
summarised in a table as reported in Egozcue and Pawlowsky-
Glahn (2005). From a general point of view, in the kth step the
balance zk (Eq. (2)) between two groups is obtained so that the rk

(þ1) parts are balanced with the sk (�1) parts:

zk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rksk

rkþsk

r
ln
ðxi1xi2xirk

Þ
1=rk

ðxj1xj2xjsk
Þ
1=sk

, k¼ 1,D�1 ð2Þ

or:

zk ¼

ffiffiffiffiffiffiffiffiffi
rs

rþs

r
ln

gmðxþ Þ

gmðx�Þ
, ð3Þ
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