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The objective function used when determining parameters in models for multiphase flow in porous
media can have multiple local minima. The challenge is then to find the global minimum and also to
determine the uniqueness of the optimized parameter values. A method for mapping out local minima to
search for the global minimum by traversing regions of first order saddle points on the objective function
surface is presented. This approach has been implemented with the iTOUGH2 software for estimation of
models parameters. The methods applicability is illustrated here with two examples: a test problem
mimicking a steady-state Darcy experiment and a simplified model of the Laugarnes geothermal area in
Reykjavik, Iceland. A brief comparison with other global optimization techniques, in particular simulated
annealing, differential evolution and harmony search algorithms is presented.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The development of reservoir models often involves inverse
modeling, i.e. an estimation of model parameters by fitting calculated
values of the response of the system to measurements at discrete
points in space and time. The difference between the model calcula-
tion and the measured data at the calibration points can be
represented by an objective function of the model parameters. The
task of estimating the best set of model parameters is thereby
formulated as an optimization problem where the goal is to
determine the parameter values that minimize the objective func-
tion. Even for models with only a few parameters, the resulting
objective function can have more than one minimum. This is
illustrated in Fig. 1, which shows a one-dimensional cut of an
objective function for a geothermal reservoir model described below.
Within the parameter interval shown, three local minima are
present. The occurrence of multiple local minima is more likely in
models with a larger number of parameters. Hence, the task becomes
to find the global minimum of the objective function among several
local minima. This is a challenging problem. Furthermore, it is
important to know whether additional local minima, with only
insignificantly higher objective function values are present since they
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could, for practical purposes, represent nearly as good parameter
values as the global minimum.

Numerical algorithms for optimization can be broadly categorized
into local optimization methods and global optimization methods.
Local optimization algorithms involve an iterative process where
starting from some initial guess, new parameter values are found
so as to lower the value of the objective function. Such algorithms
only find local minima, typically the local minimum nearest to the
initial guess. Typically, local optimization methods rely on the
evaluation of the gradient of the objective function. Some exam-
ples are steepest descent, conjugate gradient, Quasi-Newton and
Levenberg-Marquardt methods. By carrying out multiple mini-
mizations starting from different initial guesses, such methods can
be used to find the global minimum but this becomes an
inefficient procedure when many parameters are varied.

Global optimization algorithms, on the other hand, attempt to
find the global minimum by also allowing the increase of the
objective function during the iterative procedure. Some examples
are, simulated annealing using Markov chain Monte Carlo meth-
ods and evolutionary algorithms such as differential evolutionary,
harmony search, and particle swarm optimization. These methods
do not make use of the gradient of the objective function and tend
to converge more slowly to minima of the objective function, but
have the advantage over local optimization methods that they can
identify the global minimum. Three of these algorithms will be
briefly described here, the simulated annealing, differential evolution
and harmony search algorithms. These are implemented in the
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Fig. 1. A one-dimensional cut of the objective function for a geothermal reservoir
model of the Laugarnes area described in Section 4. The logarithm of the
permeability is varied. In addition to a global minimum (near —14.1), two local
minima are present (near —16.5 and —13.0).

iTOUGH2 software, and will be compared with the global optimiza-
tion method proposed here.

Simulated Annealing (Kirkpatrick et al, 1983) is an iterative
procedure where an initial guess of the parameter values is iteratively
updated with random increments and a selection criterion until a
termination condition is reached. There, the objective function is taken
to represent an ‘energy’ of the system, and a fictitious temperature is
introduced. The temperature is introduced to control the probability of
accepting increases in the objective function as an intermediate step to
ultimately reach lower function values. A central issue in simulated
annealing calculations is the ‘time scale’ of the cooling of the system
from high temperature to zero temperature. The slower the cooling
rate, the more likely the global minimum is found, but the computa-
tional effort becomes larger. It has been shown that in the impossible
limit of infinitely long simulations with infinitesimal cooling rate, the
method is guaranteed to give the global minimum (Haario and
Saksman, 1991; Tsallis and Stariolo, 1996). For a given amount of
computational effort, an implementation that can simulate a longer
time interval is, more likely to reach the global minimum.

The Differential Evolution algorithm (Storn and Price, 1997)
uses a randomly generated initial population, preferably covering
the entire parameter space, which is then modified by differential
mutation and crossover along with a selection criterion to find the
minimum of the objective function. It has emerged as one of the
simplest and most efficient techniques for solving global optimiza-
tion problems. The method has been applied to diverse domains of
science and engineering, such as mechanical engineering (Joshi and
Sanderson, 1999), chemical engineering (Wang and Jang, 2000),
machine intelligence, and pattern recognition (Das et al., 2008).
Some weaknesses of the method have been identified (Lampinen
and Zelinka, 2000). Furthermore, the performance of the method
deteriorates as the number of parameters increases (Ali et al., 2012).
Several suggestions for improving its performance have been
proposed (Ali and Pant, 2011).

Harmony search (Geem et al., 2001) is also a population-based
optimization algorithm using a stochastic random search (Lee and
Geem, 2004). It has been applied to a wide variety of optimization
problems (Geem et al., 2002, 2005; Kang and Geem, 2004; Kim
et al,, 2001; Lee and Geem, 2004). However, problems with the
method, such as the need for parameter tuning, have been a topic
of much research over the last 10 years where improvements have
been proposed (Fourie et al., 2013).

The global optimization method presented here can be consid-
ered as a descendant of a method for long time scale simulations of
atomic scale models of solids, known as adaptive kinetic Monte
Carlo (AKMC) (Henkelman and Jénsson, 2001). The AKMC method
has been successfully applied to atomic scale problems in solid-
state physics and chemistry, see for example: (Henkelman and
Jonsson, 2003; Karssemeijer et al., 2012; Pedersen et al., 2009a,
2009b; Pedersen and Jonsson, 2010). There, the time evolution is
described by visiting local minima on the energy surface and
identifying transitions by searching for first order saddle points
on the objective function surface (Henkelman and Jénsson, 1999).
Here, we modify the AKMC method to adapt it better to global
optimization (Pedersen et al.,, 2012). The method, which we will
refer to as global optimization using saddle traversals (GOUST) is
described in detail below. It has been implemented in the EON
software (Pedersen and Jonsson, 2010), which makes it possible to
carry out the calculations using distributed and cloud computing

2. The GOUST method

The GOUST method relies on a fast way to identify first order
saddle points on the objective function surface. We therefore first
describe briefly the tool used for this purpose. A more detailed
description is given in Henkelman and Jénsson (1999).

2.1. Minimum mode following

Let the number of variables of the objective function (param-
eters in the model to be fitted) be denoted by N. The objective
function can be denoted as

f:RVS R 1)

this defines a surface in N-dimensional space. The function is
assumed to be differentiable. The extremal points where the
gradient vanishes, Vf=0, and the function value is low are of
particular interest as these are local minima and low lying saddle
points. To distinguish between these two kinds of extrema, the
matrix of second order derivatives (the Hessian matrix, Eq. (2)) can
be used. The Hessian has only positive eigenvalues at a local
minimum, whereas one of the eigenvalues is negative at a first
order saddle point (SPs).
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To locate SPs, it is assumed that the gradient Vf of the objective
function can be evaluated readily (recent developments in auto-
matic differentiation (see Gregory et al., 1997) could prove valu-
able in this context), but second derivatives are not needed. The
method used to find SPs involves a minimization using a trans-
formed gradient where the component along the minimum mode
of the Hessian has been reversed

Vf = vf - 2(9f0,)8 3)

here, 7, is a normalized eigenvector corresponding to the mini-
mum eigenvalue, 4, of the Hessian. This projection (Eq. (3)) locally
transforms the gradient in the vicinity of a SP to a gradient
characteristic of the vicinity of a minimum. A number of local
minimization methods can then be used to converge on SPs when
erff is used as input, for example the conjugate gradient method.
This will be referred to as the minimum mode following (MMF)
method. It is important to note that only the minimum mode of
the Hessian matrix is required here. The minimum mode vector
can be estimated efficiently using either the dimer method
(Henkelman and Jénsson, 1999) or the Lanczos method (Lanczos,
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