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a b s t r a c t

Geological Image Analysis Software (GIAS) combines basic tools for calculating object area, abundance,

radius, perimeter, eccentricity, orientation, and centroid location, with the first automated method for

characterizing the aerial distribution of objects using sample-size-dependent nearest neighbor (NN)

statistics. The NN analyses include tests for (1) Poisson, (2) Normalized Poisson, (3) Scavenged k=1, and

(4) Scavenged k=2 NN distributions. GIAS is implemented in MATLAB with a Graphical User Interface

(GUI) that is available as pre-parsed pseudocode for use with MATLAB, or as a stand-alone application

that runs on Windows and Unix systems. GIAS can process raster data (e.g., satellite imagery,

photomicrographs, etc.) and tables of object coordinates to characterize the size, geometry, orientation,

and spatial organization of a wide range of geological features. This information expedites quantitative

measurements of 2D object properties, provides criteria for validating the use of stereology to transform

2D object sections into 3D models, and establishes a standardized NN methodology that can be used to

compare the results of different geospatial studies and identify objects using non-morphological

parameters.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Geological image analysis extracts information from represen-
tations of natural objects that may either be captured by an
imaging system (e.g., photomicrographs, aerial photographs, and
digital satellite imagery) or schematically rendered into visual
form (e.g., geological maps). In addition to examining the
properties of individual objects, spatial analysis may be used to
quantify object distributions and investigate their formation
processes.

ImageJ (Rasband, 2005) is a commonly used image processing
application that was developed as an open source Java-based
program by the National Institutes of Health (NIH). Custom plug-
in modules enable ImageJ to solve numerous tasks, including the
analysis of vesicle size-frequency distributions within geological
thin-sections (e.g., Szramek et al., 2006; Polacci et al., 2007).
However, ImageJ and similar programs for Windows (e.g., Scion
Image and ImageTool) and Macintosh (e.g., NIH Image) are not
specifically designed for geological applications nor do they
provide analytical tools for investigating patterns of spatial
organization.

To take greater advantage of the information contained within
geological images, we have developed Geological Image Analysis
Software (GIAS). This program combines (1) an image processing
module for calculating and visualizing object areas, abundance,
radii, perimeters, eccentricities, orientations, and centroid loca-
tions, and (2) a spatial distribution module that automates
sample-size-dependent nearest neighbor (NN) analyses. Although
other programs can perform the basic functions in the ‘‘Image
Analysis’’ module, GIAS is the first program to automate sample-
size-dependent analyses of NN distributions.

2. Motivation

Nearest neighbor (NN) analysis is well-suited for investigating
patterns of spatial distribution within intrinsically two-dimen-
sional (2D) datasets, such as orthorectified aerial photographs and
satellite imagery. Applications of NN analyses to remote sensing
imagery include the study of volcanic landforms (Bruno et al.,
2004, 2006; Baloga et al., 2007; Bishop, 2008; Hamilton et al.,
2010b; Bleacher et al., 2009), sedimentary mud volcanoes (Burr
et al., 2010b), periglacial ice-cored mounds (Bruno et al., 2006),
glaciofluvial features (Burr et al., 2009), dune fields (Wilkins and
Ford, 2007), and impact craters (Bruno et al., 2006). Despite
widespread utilization of NN analyses, its value as a remote
sensing tool and effectiveness as basis for comparison between

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

0098-3004/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cageo.2009.09.003

$Code available from server at http://www.geoanalysis.org.
n Corresponding author. Tel.: +44 131 650 5916.

E-mail address: ciaran.beggan@ed.ac.uk (C. Beggan).

Computers & Geosciences 36 (2010) 539–549

www.elsevier.com/locate/cageo
dx.doi.org/10.1016/j.cageo.2009.09.003
http://www.geoanalysis.org


ARTICLE IN PRESS

different datasets is limited by the lack of a standardized NN
methodology—particularly in terms of defining feature field
areas, thresholds of significance, and criteria for apply higher-
order NN methods.

In addition to remote sensing applications, NN analyses can be
used to study objects in photomicrographs such as crystals
(Jerram et al., 1996, 2003; Jerram and Cheadle, 2000) and vesicles.
In this study, we emphasize the application of NN analyses to
vesicle distributions to demonstrate how GIAS can be used to
validate (or refute) the assumption of randomness, which is a
prerequisite for effectively applying stereological techniques to
derive vesicle volumes from photomicrographs and for selecting
appropriate statistical models to characterize those vesicle
populations.

Vesicle textures preserve information about the pre-eruptive
history of magmas and can be used to investigate the dynamics of
explosive and effusive volcanic eruptions (e.g., Mangan et al.,
1993; Cashman and Mangan, 1994; Mangan and Cashman, 1996;
Cashman and Kauahikaua, 1997; Polacci and Papale, 1997; Blower
et al., 2001, 2003; Gaonac’h et al., 2005; Shin et al., 2005; Lautze
and Houghton, 2005; Adams et al., 2006; Polacci et al., 2006; Sable
et al., 2006; Gurioli et al., 2008). Quantitative vesicle analyses
stem from Marsh (1988), who explored the physics of crystal
nucleation and growth dynamics to derive an analytical formula-
tion for crystal size distributions. This research was then applied
to numerous bubble size-frequency distribution studies (e.g.,
Sarda and Graham, 1990; Cashman and Mangan, 1994; Blower
et al., 2003). Early studies of vesicle distributions (e.g., Cashman
and Mangan, 1994) were limited by their inability to characterize
the full range of vesicle sizes because their methodology could not
resolve the smallest vesicles. Nested photomicrographs solve this
problem because photomicrographs captured at multiple magni-
fications enable the reconstruction of total vesicle size-frequency
distributions (e.g., Adams et al., 2006; Gurioli et al., 2008).

In general, vesicle studies are limited by two major factors:
transformations of 2D cross-sections into representative vesicle
volumes (Mangan et al., 1993; Sahagian and Proussevitch, 1998;
Higgins, 2000; Jerram and Cheadle, 2000), and development of
reliable statistical characterizations of vesicle populations in
terms of distribution functions and their spatial characteristics
(Morgan and Jerram, 2006; Proussevitch et al., 2007a). These
difficulties have been partially addressed by improved statistical
techniques for investigating vesicle populations; however, a
single cross-section cannot be used to reconstruct a representa-
tive 3D vesicle distribution unless the objects viewed in a 2D
section can be characterized using 2D reference textures with
known 3D distributions (Jerram et al., 1996, 2003; Jerram and
Cheadle, 2000; Proussevitch et al., 2007a). Although synchrotron
X-ray tomography is increasingly being used to directly generate

3D vesicle distributions (e.g., Gualda and Rivers, 2006; Polacci
et al., 2007; Proussevitch et al., 2007b), nested datasets containing
multiple scanning electron microscope (SEM) images remain the
most common input for vesicle studies because of their superior
spatial resolution relative to X-ray tomography. To facilitate the
analysis of vesicles in SEM imagery, GIAS can be used to
determine the geometric properties of vesicles within the plane
of a given photomicrograph and establish if objects fulfil the
criteria of spatial randomness, which is required for transforming
2D sections into 3D models using stereology.

3. Nearest neighbor (NN) analysis

Clark and Evans (1954) proposed a simple test for spatial
randomness in which the actual mean NN distance (ra) in a
population of known density is compared with the expected mean
NN distance (re) within a randomly distributed population of
equivalent density. Following Clark and Evans (1954), re and
expected standard error (se) of the Poisson distribution are as
follows:

re ¼
1

2 ffiffiffirp 0
; se ¼

0:26136ffiffiffiffiffiffiffi
Nr

p
0

; ð1;2Þ

where the input population density, r0, equals the number of
objects (N) divided by the area (A) of the feature field (r0=N/A).
The following two test statistics (termed R and c) are used to
determine if ra follows a Poisson random distribution:

R¼
ra

re
; c¼

ra�re

se
: ð3;4Þ

If a test population exhibits a Poisson random distribution, R

should ideally have a value of 1, while c should equal 0. If R is
approximately equal to 1, then the test population may have a
Poisson random distribution. If R41, then the test population
exhibits greater than random NN spacing (i.e., tends towards a
maximum packing arrangement), whereas if Ro1, then the NN
distances in the test case are more closely spaced than expected
within a random distribution and thus exhibit clustering relative
to the Poisson model.

To identify statistically significant departures from random-
ness at the 0.95 and 0.99 confidence levels, 9c9 must exceed the
critical values of 1.96 and 2.58, respectively (Clark and Evans,
1954); however, these critical values implicitly assume large
sample populations (N4104). Jerram et al. (1996) and Baloga
et al. (2007) note that finite-sampling effects introduce biases into
the variation of NN statistics. These biases become significant for
small populations (No300) and thereby necessitate the use of
sample-size-dependent calculations of R and c thresholds.

Nomenclature
A area of a feature field
Ahull area of the convex hull
c statistic for comparing observed (actual) to expected

mean NN distances
k Poisson index
N number of features within a sample population
Ni number of features within the convex hull
Nv number of features forming the vertices of the convex

hull
NN abbreviation for nearest neighbor
p probability
R statistic for comparing actual (ra) to expected (re)

mean NN distances

r radial distance
r0 threshold distance used to calculate Normalized

Poisson NN distributions
ra mean NN distance observed in the data
re mean NN distance calculated from a given NN model

(e.g., Poisson)
P probability density
r0 population (spatial) density of the input features

(r0=N/A)
ri population (spatial) density of the input features

(ri=Ni/Ahull)
s standard deviation
se standard error
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