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a b s t r a c t

Wireless sensor networks (WSNs) play a vital role in environmental monitoring. Advances in mobile

sensors offer new opportunities to improve phenomenon predictions by adapting spatial sampling to

local variability. Two issues are relevant: which location should be sampled and which mobile sensor

should move to do it? This paper proposes a form of adaptive sampling by mobile sensors according to

the expected value of information (EVoI) and mobility constraints. EVoI allows decisions to be made

about the location to observe. It minimises the expected costs of wrong predictions about

a phenomenon using a spatially aggregated EVoI criterion. Mobility constraints allow decisions to be

made about which sensor to move. A cost-distance criterion is used to minimise unwanted effects of

sensor mobility on the WSN itself, such as energy depletion. We implemented our approach using

a synthetic data set, representing a typical monitoring scenario with heterogeneous mobile sensors.

To assess the method, it was compared with a random selection of sample locations. The results

demonstrate that EVoI enables selecting the most informative locations, while mobility constraints

provide the needed context for sensor selection. This paper therefore provides insights about how

sensor mobility can be efficiently managed to improve knowledge about a monitored phenomenon.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The importance of environmental monitoring has been widely
recognised for applications such as mapping of contaminants
(Horsburgh et al., 2010; Milton and Steed, 2007), levels of
exposure to hazardous substances (Dubois et al., 2011; Melles
et al., 2011) and species distribution (Zerger et al., 2010). Rational
decisions about natural resource management and emergency
responses rely on information gathered by sensors. How these
sensors are distributed affects sampling design (de Gruijter et al.,
2006) and, as a consequence, decision making. For instance,
Heuvelink et al. (2010) illustrated the effect of sensor placement
on dose predictions and decision making in a nuclear emergency
situation. Erroneous predictions of an absence of radioactivity
(false negatives) will lead to warnings not being triggered,
whereas wrong predictions of the presence of radioactivity (false
positives) will trigger unnecessary actions, such as the evacuation
of residents and the deployment of rescue teams. The costs of
prediction errors can be minimised by adapting spatial sampling
to local variability.

Wireless sensor networks (WSNs) are increasingly used in
environmental monitoring. They enable real-time monitoring with
spatial and temporal resolutions never captured before (Nittel,
2009; Porter et al., 2009; Rundel et al., 2009; Zerger et al., 2010).
WSNs are composed of autonomous and wirelessly networked
sensors spatially distributed in a study area (Akyildiz et al., 2002).
When using stationary WSNs, spatial sampling can be adapted to
local variability by using sleeping and waking up mechanisms
(Hefeeda and Bagheri, 2008; Willett et al., 2004). This requires a
high sensor density. However, mobile WSNs offer new opportu-
nities to adapt spatial sampling using a reduced number of mobile
sensors (Liu et al., 2005; Rundel et al., 2009; Singh et al., 2006).
Mobility is achieved by attaching sensors to mobile objects, such
as robots (Dantu et al., 2005), people (Campbell et al., 2008),
bicycles (Eisenman et al., 2007), vehicles (Zoysa et al., 2007) and
animals (Juang et al., 2002; Sahin, 2007). If mobility is controlled,
the locations of sensors can be changed to achieve specific goals
(Jun et al., 2009), such as adapting sampling to local variability. In
the paper, we consider the situation where the monitored phe-
nomenon has a slower temporal rate as compared to the speed at
which the sampling is done. More particularly, we assume that
reality does not change during sampling. While this may seem a
serious restriction, it is quite a common situation for example
when assessing soil contamination (Rodriguez-Lado et al., 2008;
Romic et al., 2007), natural radioactivity (Heuvelink and Griffith,
2010), and biodiversity (Zerger et al., 2010).
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When sampling with mobile sensors, two decisions have to be
made: where the observation should be made, and which sensor
should be moved to the location to make the observation. The first
decision is to identify a sampling location to optimise a certain
objective. The second decision is to choose a sensor to move to the
identified location such that sensor mobility is efficiently managed.

Different approaches for deciding where to make the observa-
tion have been studied. Coverage-oriented approaches select
locations according to geometric criteria, such as Voronoi dia-
grams and virtual forces (Wang et al., 2009). Information-theore-
tic approaches (e.g. entropy and mutual information) seek to
reduce uncertainty resulting from sensor mobility (Krause et al.,
2008). These approaches, however, have limitations. For example,
they do not consider the phenomenon under investigation
(Krause et al., 2008; Walkowski, 2008), they do not identify
misclassification types (false positives and false negatives) and
they do not assess locations for their potential to minimise
misclassifications (Donaldson-Matasci et al., 2010).

An alternative approach is to use the expected value of
information (EVoI). This method evaluates the expected relevance
of observations made at certain locations, prior to making the
observation (Bhattacharjya et al., 2010; de Bruin et al., 2001;
Kangas, 2010). It compares the expected cost of making predic-
tions using the available observations with the cost when an
additional observation has been made in a new location. The EVoI
is the reduction in the expected cost of prediction errors achieved
by making the additional observation. The location of this addi-
tional observation can be selected by choosing the location that
gives the highest EVoI. EVoI considers the phenomenon state and
it allows decisions to be made based on the relevance of locations
and different misclassification types. We therefore propose an
EVoI maximisation criterion.

When deciding on which sensor to move to the new sample
location, intuitively the best sensor would appear to be the closest
one. However, constraints on the mobility of a sensor may
make moving it costly or even impossible (Ballari et al., 2012;
Walkowski, 2008; Younis and Akkaya, 2008). These constraints may
be hard or soft constraints. Hard mobility constraints make it
impossible for the sensor to be moved: it may itself be immobile
or movement may be obstructed by barriers between the current
sensor location and that to be sampled. Soft mobility constraints
include energy, terrain slope, speed, and sensor connectivity for data
transmission. For example, moving up a slope is more costly than
travelling downhill. In a previous study, sensors were selected using
a weighted-distance approach (Verma et al., 2006). Walkowski
(2008) proposed the concepts of time geography to analyse con-
straints and select sensors within potential activity areas. Zou and
Chakrabarty (2007) employed cost evaluation techniques to trade
off target tracking improvements against mobility constraints.

Although these studies have integrated and prioritised mobi-
lity constraints, none of them have addressed their potential
dependent influences. The influences of mobility constraints
should not be considered independently of each other and may
be dependent on the presence of other constraints. For instance, if
sensors are carried by robots, battery status may affect both
mobility and sensing capabilities, but if sensors are carried by
people, battery status does not constrain mobility. The influence
of sensor energy therefore depends on the type of mobile object.
These dependencies should be taken into account because they
can make influences of mobility constraints stronger, weaker or
even inapplicable.

For deciding which sensor to move, we propose a cost-distance
minimisation criterion that integrates mobility constraints with
dependent influences. The cost-distance to move a sensor under
mobility constraints is estimated using influence diagrams (IDs), a
useful way to represent and make decisions (Howard and

Matheson, 2005; Jensen and Nielsen, 2007; Kjaerulff and
Madsen, 2007). Like decision trees, IDs link together the variables
of a decision (i.e. factors, costs and decisions). The advantage of
IDs over decision trees is that they provide a more compact
representation of dependencies and more efficient computation
when a high number of constraints are integrated (Varis, 1997).

This paper and the accompanying R script (R Development Core
Team, 2010) illustrate a spatial sampling approach for use with
mobile sensors that aims to maximise EVoI from new observations
and minimise the cost-distance of sensor movement under mobi-
lity constraints. In the present study these two objectives are
considered in separate steps.

First, we introduce EVoI, the calculation of misclassification
costs, and the use of an aggregated EVoI. Then we describe the
calculation of the cost-distance for moving a sensor under
mobility constraints. A synthetic study case is described in
Section 4. Section 5 contains the results and discussions. Finally,
conclusions are presented.

2. Related work

There is a substantial body of literature on mobile sensors and
location selection. Surveys can be found in Wang et al. (2009,
2012) and Younis and Akkaya (2008). Several studies aim to select
sensor locations to optimise network configuration, in terms of
data transmission and connectivity (Ekici et al., 2006) or energy
conservation (Basagni et al., 2008; Jain et al., 2006; Wang et al.,
2010).

On the other hand, coverage-oriented approaches aim to select
sensor locations in order to optimise spatial coverage of the study
area. The coverage optimisation may be achieved by locating
sensors at the centroids of k-means clusters (Walvoort et al.,
2010) or by using virtual forces which repel sensors from each
other and from obstacles (Howard et al., 2002) or Voronoi
diagrams and Delaunay triangulation (Argany et al., 2011). Simi-
larly, in geostatistics the aim of sampling often is to minimise the
(mean) kriging error variance (Brus and Heuvelink, 2007;
Walkowski, 2008). The drawback of the above methods is that
spatial sampling is adapted according to geometric criteria while it
is not affected by characteristics of the monitored phenomenon.

Other approaches rely on ancillary data or covariates, such as
digital elevation models, aerial or satellite imagery, and climate
information, which are assumed to be correlated with the phe-
nomenon of interest. For example, Minasny et al. (2007) used a
quadtree method with secondary data to sparsely sampling in
relatively uniform areas and more intensively where covariate
variation is large. Minasny and McBratney (2006) used a Latin
hypercube method to select locations that provide a full coverage
of the range of each secondary variable. Brus and Heuvelink (2007)
minimised the spatial average of the universal kriging variance to
obtain the right balance between sparsing sensors in geographic
and feature spaces.The applicability of these approaches, however,
is restricted to the availability of ancillary data. For instance, they
might not be available for the whole study area or with the
required resolution, or they might be expensive to acquire.

Information-theoretic approaches employ entropy and mutual
information to improve information quality by reducing uncer-
tainty about the true state of the phenomenon (Krause et al.,
2008). These measures, however, do not depend on how data
about the state of the phenomenon is used in decision making
(Donaldson-Matasci et al., 2010). They are measures of informa-
tion quality, but they do not reflect the quality of the decision that
will be made with sensor observations. In contrast, based on
decision theory, our method considers both the network config-
uration and the information obtained from sensor observations.
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