
Social.Water—A crowdsourcing tool for environmental data acquisition

Michael N. Fienen a,n, Christopher S. Lowry b

a US Geological Survey, Wisconsin Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
b University at Buffalo, Geology Department, 411 Cooke Hall, Buffalo, NY 14260, USA

a r t i c l e i n f o

Article history:

Received 16 April 2012

Received in revised form

14 June 2012

Accepted 18 June 2012
Available online 26 June 2012

Keywords:

E-geoscience

Citizen science

Hydrology

Streamgaging

Python

a b s t r a c t

Remote telemetry has a long history of use for collection of environmental measurements. With the rise

of mobile phones and SMS text-messaging capacity, many members of the general pubic carry

communications equipment in their pockets at all times. Enabling the general public to provide

environmental data through text messages has the potential both to provide additional data to

scientific projects and also to raise awareness of the projects through participation. Hydrologic

measurements – some of which can be made without training, involve a single measurement, and

are often made in rural areas – are well-suited to text-message conveyance. Many other environmental

measurements are similarly well-suited for this technology. Social.Water is a software package, written

in Python, that collects, parses, and categorizes text messages sent to a dedicated phone number,

updates a simple database, and posts both graphical results and the database on the Web. Social.Water

was designed as the backend to the Crowdhydrology project and is written in an object-oriented design

that makes customization and modification straightforward.

Published by Elsevier Ltd.

1. Introduction

Acquisition of field data is an expensive part of most geoscience
projects—it is also an opportunity for geoscientists to interact with
the public. Lowering the cost of data acquisition in concert with
increasing public interaction can provide science benefits to pro-
jects from reducing the expense of data collection and through
increased public engagement. Allowing citizen-scientists to con-
tribute data to a scientific project is an example of crowdsourcing.
Crowdsourcing means obtaining information or analysis from the
‘‘crowd’’ – the general public – and is so-named as an adjunct to
outsourcing (Howe, 2006). An example of this approach is the
Crowdhydrology project (Lowry and Fienen, in press). In this
project, the authors used text messages to obtain stream water
levels at multiple sites in upstate New York, USA. Visitors to the
sites saw signs posted on water level gages asking that they send a
text message with the station number and the water level reading
from the gage. These messages are forwarded to an email server
where they are parsed by a script to associate measurements with
specific gages, and then displayed in near real time on the Web.
Between May 2011 and February 2012, nearly 150 measurements
from nine locations were submitted by citizen scientists in this way.
This work details the software package, Social.Water, which forms

the backbone infrastructure for the Crowdhydrology project. Lowry
and Fienen (in press) also describe a variety of previous projects
using crowdsourcing technology in natural science applications.

Social.Water is a program written in Python, building on the
open-source tools that form the protocol for Crowdhydrology. The
main objective for Social.Water is to provide a simple, modular,
and inexpensive way to enlist the general public in collecting
scientific data (stream water levels in the case of Crowdhydrol-
ogy). The data are transmitted using text message protocols. The
data obtained in this way can supplement measurements made
by project staff when telemetry or continuous recording are
infeasible. A secondary but important outcome of using this
protocol is engagement and, in a sense, ownership by citizens
who encounter the field sites and contribute information. Enlist-
ing citizen-scientists in data collection efforts dates at least back
to the inception of the Audobon Society’s Christmas Bird Counts
(Wiersma, 2010) in 1900. The recent proliferation of mobile
phones and smartphones means telemetry more sophisticated
than one dreamt of 20 years ago is in nearly everyone’s pocket.

Social.Water depends on text messages forwarded to an IMAP-
enabled email account for the transmission of data. An obvious
alternative would be the use of a smartphone application such as
CreekWatch (IBM, 2012). Smartphone applications allow for
automatic geolocation, submission of photographs, and other
advantages such as delayed synching when off-network. Recent
developments in HTML5 standards also make cross-platform
development realistic (Isaac, 2011). However, a goal with Social.-
Water is to allow transmission of strictly text and numerical data

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

0098-3004/$ - see front matter Published by Elsevier Ltd.

http://dx.doi.org/10.1016/j.cageo.2012.06.015

n Corresponding author.

E-mail addresses: mnfienen@usgs.gov (M.N. Fienen),

cslowry@buffalo.edu (C.S. Lowry).

Computers & Geosciences 49 (2012) 164–169

www.elsevier.com/locate/cageo
www.elsevier.com/locate/cageo
dx.doi.org/10.1016/j.cageo.2012.06.015
dx.doi.org/10.1016/j.cageo.2012.06.015
dx.doi.org/10.1016/j.cageo.2012.06.015
mailto:mnfienen@usgs.gov
mailto:cslowry@buffalo.edu
dx.doi.org/10.1016/j.cageo.2012.06.015


on a platform that is most commonly available. Despite the
popularity of smartphones in the United States, only 46% of adults
have them, compared to 87% of adults who have some kind of
mobile phone (Smith, 2012). Furthermore, a smartphone app
requires users to download and install the app prior to participa-
tion. The guiding precept of this project was to lower the barriers to
participation as much as possible such that the simplest imple-
mentation with the lowest burden on users would be realized.

One challenge in using text messages rather than a dedicated
smartphone application is the need to interpret, parse, and categor-
ize the messages to extract the relevant data. In the Crowdhydrol-
ogy project, instructions to observers were intentionally simple and
imprecise. Adaptations to the code, discussed below, were required
for successful parsing and categorization of results.

In the remainder of this paper, we discuss the details of
implementation of the Social.Water code, review the application
to the Crowdhydrology project, and provide conclusions and
future plans.

2. Social.Water code

Social.Water is written using an object-oriented approach in
Python (van Rossum, 2012) version 2.7.2. Because Social.Water is
designed in an object-oriented way, the main code in sw_dri-
ver.py is only a few lines that initialize an object to contain the
information in the code and call methods that perform actions on
that object. Several dependent files must be in the path for
sw_driver.py to access them. The classes used by Social.Water
are in social_water.py. Two other dependent scripts are in
fuzz.py and process.py. These two scripts contain functions
from the fuzzy-search algorithm fuzzywuzzy (Cohen, 2011) dis-
cussed below. In the remainder of this section, we discuss the
mechanics of Social.Water implementation. The code is meant to
balance generality with code maintenance and customization. As
a result, some customization is required to deploy Social.Water on
projects other than Crowdhydrology. Fig. 1 illustrates the general
process flow of Social.Water. The entire Social.Water code, along
with ancillary code and datafiles, are installed on a server and run

through a cron script every 5 min. The runtime is typically less
than a second and the majority of times the cron script executes,
Social.Water logs into an email account, detects that no new
messages are present, and immediately exits.

An initial requirement to implement Social.Water is to forward
text messages to an Internet Message Access Protocol (IMAP,
Internet Engineering Task Force, 2003b)-enabled email account.
We chose Google Voice (voice.google.com) because it is free and
can be set up with a dedicated phone number serving the sole
purpose of receiving text messages and forwarding them to the
email account. Social.Water is run on a server and, using IMAP,
checks a free email account every 5 min, parses new messages to
determine if they contain valid water level measurements asso-
ciated with known gages, updates a simple flat database, and
displays a graphical result on an HTML page.

Information required to initialize the class email_reader is a
user name for an email account, an obfuscated password, and the
scope of the email search (‘‘UNSEEN’’ only reads messages marked
as unread and ‘‘ALL’’ reads all messages in the email account). For
the Crowdhydrology project, we used a Gmail account (gmail.-
google.com) as a free, IMAP-enabled email client—if a different
email client is desired, email_reader.login() would need to be
updated. The password is obfuscated using the python base64

module implementing RFC 3548 (Internet Engineering Task Force,
2003a). This obfuscation is not meant to be highly secure, but it
prevents a non-human hack from obtaining the password in plain
text from the codebase. Nonetheless, we recommend using a
sacrificial, dedicated email account for this purpose to avoid any
conflict with private data.

After initialization, email_reader.login() is called to con-
nect to the IMAP server. email_reader.checkmail() checks to
see if new messages, based on the email_scope outlined above,
are present in the IMAP account. If no new messages are present,
Social.Water exits because no new work is required of it. If new
messages are present, email_reader.parsemail() pulls the
date stamps and message bodies from the new messages, only
considering new messages with the text ‘‘SMS from’’ in the
subject line. This prevents spam, advertisements, or any other
non-data email messages from being further considered.

Fig. 1. Schematic representation of the Social.Water program flow from text message, forwarded to email, parsed, and displayed as a data table and graphically.

M.N. Fienen, C.S. Lowry / Computers & Geosciences 49 (2012) 164–169 165



Download English Version:

https://daneshyari.com/en/article/507419

Download Persian Version:

https://daneshyari.com/article/507419

Daneshyari.com

https://daneshyari.com/en/article/507419
https://daneshyari.com/article/507419
https://daneshyari.com

