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a b s t r a c t

Load Love numbers and Green’s functions are computed for elastic Earth models PREM, iasp91 and

ak135, and their modified models with refined crustal structure from Crust 2.0. It is found that the

differences of results between iasp91 or ak135 and PREM, and the effects of refinement of crustal

structure are significant for the Love numbers of degrees from around 200 to very high numbers, and

for the Green’s functions in the near-field. The results of the models given in this paper are applicable to

the studies related to loading processes (present surface mass transport as measured by GRACE and

GPS, ocean tide loading, etc.), making it possible to use different models or assess the uncertainties of

solutions of the loading problems under investigation. In order to ensure the stability of the solutions

for degrees larger than 360 (or when the resolution is less than 55 km), a variable transformation on the

solution vector is used in this paper and proved to work effectively.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Since both load Love numbers (LLNs) and load Green’s func-
tions (LGFs) are dependent strongly upon the P-wave velocity VP,
S-wave velocity VS and density r for a spherically-symmetric non-
rotating elastic isotropic (SNREI) Earth model, the numerical
results must be updated along with the development of new
Earth models with new data constraints.

PREM Earth model (Dziewonski and Anderson, 1981) used the
data of body wave travel times and the periods of normal modes from
years 1964 to 1975 collected by the International Seismological
Centre (ISC). For Earth model iasp91 (Kennett and Engdahl, 1991),
the data of body waves used were extended to 1987 and for the
follow-on ak135 model (Kennett et al., 1995), the data of P wave were
extended to 1991. The largest differences of elastic structures
between iasp91/ak135 and PREM can be found in the shallow part
of the Earth (Figs. 1 and 2). Especially, PREM includes a discontinuity
at depth 220 km which iasp91 and ak135 do not support. The
differences between model iasp91 and ak135 are usually very small
except for the S-wave velocity within 50 km depth. However,
although the subsequent Earth models iasp91 and ak135 were
already produced, the model PREM has been widely used to inves-
tigate the loading responses to ocean tide, terrestrial water change,

ice-melting, and last deglaciation since it was proposed in 1981 (e.g.,
Han and Wahr, 1995; Wang et al., 1996; Guo et al., 2001; Van Dam
et al., 2002). In spite of the changes of elastic structures of the two
new models compared with PREM, they have been neglected for a
long time in loading process modeling. Recently, Na and Baek (2011)
presented the results of LNNs and LGFs for iasp91 model. However,
the highest degree is limited to 10,000.

Moreover, although Crust 2.0 (Laske et al., 2012) has been
producing new results of crustal elastic structure with increasing
resolution in depth direction, showing large gaps in comparison
with the above three models (Fig. 2), it has usually not been
included in the Earth model for the modeling of loading process.

Accordingly, the aim of this paper is to compute the LLNs and
LGFs for the three representative Earth models and the modified
models with crust substituted by the globally-averaged Crust 2.0,
and to investigate how the differences in Earth’s elastic structures
affect the numerical results.

For the computation of LLNs and LGFs, some previous works
have been taken into account the lateral heterogeneity (e.g., Plag
et al., 1996) and the anisotropy of mantle (e.g., Pagiatakis, 1990)
which are, however, not the topics of this paper.

2. Numerical method

LGF is defined as the surface deformation of the Earth due to a
point load on the Earth’s surface (Longman, 1962, 1963), and can
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be conveniently expressed through three LLNs (hn, ln, kn) (Farrell,
1972). For an arbitrarily distributed mass load on the surface, the
resultant responses can be computed by convoluting the related
LGFs and the load (Peltier and Andrews, 1976; Wu and Peltier,
1982). Thus, in this paper we focus on the computation of LLNs
and LGFs for the Earth models mentioned above. The fundamental
methodology related to the computations can be found in
previous works (e.g., Longman, 1962; Farrell, 1972; Wu and
Peltier, 1982). As in Wu and Peltier (1982), one can find how
the partial differential field equations are transformed into
ordinary differential equations (ODEs, Eq. (8)), and how the ODEs
are solved by the Runge–Kutta method using boundary conditions
at the core–mantle boundary (CMB) (Eq. (48)) and on the Earth’s
surface (Eq. (11)), then we compute the LLNs (Eq. (12)) and LGFs
(Farell, 1972) as also outlined in Appendix A and Appendix B.
However, for higher degrees, the computation can be subjected to
numerical overflow or instability. In order to ensure the stability

when solving the ODEs for higher degrees, Riva and Vermeersen
(2002) developed an approximate approach and Wang et al.
(1996) proposed a variable transformation approach. In this
paper, we use the latter one since it is not based on any
assumption. It is noted that Wang et al. (1996) just mentioned
the transformation of the ODEs but did not give the results
transformed for the boundary conditions at CMB and on the
Earth’s surface, and the final formulas for LLNs. Therefore, in the
following, we thoroughly formulate the related procedures for the
transformation approach.

Since for an incompressible homogeneous SNREI model, as in
Wu and Peltier (1982), the solution vector Y ¼ ðy1, y2, y3, y4,
y5, y6Þ

T of the ODEs (Eq. (8)) was found to have a rn factor (e.g.,
Eq. (30)), for a compressible layered SNREI model considered in
this paper, thus we can define a new solution vector Z trans-
formed from Y in the following:

Y ¼ rnZ: ð1Þ

The numerical computation of Z would not overflow and
would be stable. Inserting Eq. (1) into the ODEs (Eq. (8)) and
surface boundary condition (Eq. (11)), we have new ODEs

dZ

dr
¼ A�

n

r
E

� �
Z, ð2Þ

and new surface boundary condition,

z3ðaÞ ¼ r�ny3ðaÞ

z4ðaÞ ¼ r�ny4ðaÞ

z6ðaÞ ¼ r�ny6ðaÞ

,

8><
>: ð3Þ

where E is the unit matrix, and [y3ðaÞ, y4ðaÞ, y6ðaÞ] are given by
surface boundary condition (Eq. (11)). Since the same factor is
used for the transformation of all the elements of the solution
vector, the boundary condition at the CMB (Eq. (48)) is
unchanged. However the solution (Eq. (49)) on the surface of a
small uniform sphere (r¼ dr) located at the center of the core is
transformed into ½1,2ðn�1Þdr�1�T as initial value for integrating
ODEs in the core (Eq. (8)).

Using the new solution vector Z, the corresponding LLNs
computed as in Eqs. (A1) for n41 can be written as:

hn
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knþ1
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75Fig. 1. Comparison of the density and velocity within 400 km depth among PREM,

iasp91, and ak135. r—density; VP—P-wave velocity and VS–S-wave velocity.

Fig. 2. Comparison of the density (a) and velocity (b) within 20 km depth among PREM, iasp91, ak135 and globally-averaged Crust 2.0. Soft/hard denotes soft/hard

sediment with thicknesses of 0.52 km/0.46 km.
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