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a b s t r a c t

Simulation of ground penetrating radar (GPR) wave propagation in two-dimensional (2-D) subsurface

structure is developed using the symplectic partitioned Runge–Kutta (SPRK) method. A transmitting

boundary is implemented to absorb waves at the edges of the modeling. For the 2-D case, the SPRK

schemes require only two functions for the complete description of the electromagnetic field. To verify

the performance of the proposed algorithms, results from comparisons between the SPRK schemes and

the standard FDTD method are presented. In addition, a complicated subsurface structure model is

considered. The wiggle trace profile of this model is obtained from forward simulation using a 2-order

SPRK method.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Ground penetrating radar (GPR), as a kind of high resolution,
non-destructive tool, has been widely applied to various disci-
plines, such as archaeology (Böniger and Tronicke, 2010), civil
engineering (Xu et al., 2010), and mine detection (Zyada et al.,
2011). A ground-based GPR transmitting antenna generates an
electromagnetic pulse and transmits it into the earth. The system
then records reflected, scattered, and diffracted events from
boundaries of subsurface materials and buried objects in the
earth received by an antenna on the surface. The locations of
different buried objects and the boundaries of the underground
media can be determined from the GPR data. Simulation of the
electromagnetic wave propagation in subsurface structure is
useful to get a better interpretation of real GPR profiles. It can
provide one means of exploring the link between subsurface
properties and GPR data.

Various models and approaches have been developed for
numerical models of GPR. These include ray-tracing methods
(Cai and McMechan, 1995; Zeng et al., 1995), Jonscher models
(Hollender and Tillard, 1998; Grégoire and Hollender, 2004),
pseudo-spectral methods (Casper and Kung, 1996; Carcione
et al., 1999), integral methods (Xiong and Tripp, 1997), Fourier

methods (Bitri and Grandjean, 1998; Bano, 2004; Ghasemi et al.,
2007), the finite difference time domain (FDTD) technique
(Bergmann et al., 1996; Roberts and Daniels, 1997; Chen and
Hang, 1998; Irving and Knight, 2006; C- akir and Sevgi, 2009), and
ADI-FDTD technique (Diamanti and Giannopoulos, 2009; Feng
and Dai, 2011). Unfortunately, these techniques and models are
limited in their engineering applications due to some disadvan-
tages. For instance, the ray-tracing method is difficult for model-
ing complicated structure (Zeng et al., 1995), the FDTD method
needs large memory and significant calculation time to achieve
high precision because of the restriction of the Courant–
Friedrichs–Lewy (CFL) stability condition (Taflove, 1995), and
the ADI-FDTD method eliminates the CFL limit successfully, but
a large time step also increases dispersion errors (Zheng and
Chen, 2001).

It is well known that situations where dissipation is not
significant can be modeled by Hamiltonian systems of ordinary,
or partial, differential equations. The symplectic schemes are
designed to preserve the global symplectic structure of the phase
space for a Hamiltonian system. By symplectic we mean con-
servation of energy. They show substantial benefits in numerical
computation for a Hamiltonian system, especially in long-term
simulations. Recently, the symplectic schemes have been imple-
mented in calculating the electromagnetic fields in lossless media.
Hirono et al. (1997) developed a high-order symplectic integrator
for the 2-D time-domain simulation of the electromagnetic field.
Kusaf et al. (2005) presented a new scheme for the calculation of
the coefficients of the exponential differential operators of the
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symplectic FDTD method. A four-stage optimized symplectic
integrator propagator (Huang et al., 2006) was developed for
the 3D electromagnetic scattering problems. Sha et al. (2007)
proposed an explicit fourth-order symplectic FDTD scheme to
electromagnetic simulation in 3-D. However, because the dissipa-
tion of most underground materials can not be ignored, the
problem of GPR propagation in underground structures can not
be seen as the classical Hamiltonian system. Fortunately, the
symplectic algorithms can still be used for simulation of the
electromagnetic wave propagation in lossy media (Sun, 1997).

The symplectic partitioned Runge–Kutta methods (Liu and Sun,
2004; Jiang et al., 2006; Huang and Wu, 2006) are a class of
symplectic schemes, which include a variety of different time
discretization schemes to preserve the symplectic structure. Among
these schemes, the 1-order Radau IA-I A and 2-order Lobatto IIIA-IIIB
SPRK methods are suitable for simulation of the GPR wave propaga-
tion in lossy media because both of these two schemes are explicit.
Moreover, for 2-D case, the SPRK methods require only two functions
to evolve per time step; in the standard FDTD method, three are
needed. Hence, the SPRK schemes can save computer memory usage
and CPU time significantly.

In this paper, simulations of ground penetrating radar (GPR)
wave propagation in two-dimensional (2-D) subsurface structure
are developed using 1-order Radau IA-I A and 2-order Lobatto
IIIA-IIIB SPRK methods, respectively. The transmitting boundary is
adopted to avoid reflections from the edges of the modeling. To
begin, we present the Hamiltonian system and the SPRK methods,
including the governing equations and their finite-difference
approximations. Next, the boundary condition and numerical
stability are discussed briefly. Finally, we present two examples,
one showing the comparison between the SPRK methods and the
standard FDTD scheme, and the other one showing simulation of
GPR wave propagation in the complicated subsurface structure.

2. Theory

2.1. Hamiltonian system and SPRK methods

The Hamiltonian system of canonical equations (Sun, 1995;
Huang and Wu, 2006) is given by

dpi

dt
¼�

@H

@qi

¼
def

f iðq,pÞ,
dqi

dt
¼
@H

@pi

¼
def

giðq,pÞ, i¼ 1,2,. . .,n ð1Þ

where H represents Hamiltonian function Hðqi,piÞ ði¼ 1,2,. . .,nÞ,
the integer n is the number of degrees of freedom. ‘‘def’’ means
definition. g and f are dependent variables, such as (E, H) and q and p

are independent variables, such as distance and time. Hamiltonian
systems often have a special separated structure such that

H¼Hðp,qÞ ¼ VðqÞþUðpÞ: ð2Þ

If the Hamiltonian is separable, the canonical equations can
take the partitioned form with

dpi

dt
¼�

@V

@qi

¼
def

f iðqÞ,
dqi

dt
¼
@U

@pi

¼
def

giðpÞ: i¼ 1,2,. . .,n ð3Þ

An s-stage partitioned Runge–Kutta method can be specified
by a Butecher tableau (Butcher, 2008)

c1

^

cs

�������
a11 � � � a1s

^ ^

as1 � � � ass

9 b1 � � � bs
,

C1

^

Cs

�������
A11 � � � A1s

^ ^

As1 � � � Ass

9B1 � � � Bs
: ð4Þ

Applying (4) to the Hamiltonian system (1), the following
relations can be obtained.

Pi ¼ pnþt
Xs

j ¼ 1

aijf ðQjÞ

Qi ¼ qnþt
Xs

j ¼ 1

AijgðPjÞ

pnþ1 ¼ pnþt
Xs

i ¼ 1

bif ðQiÞ

qnþ1 ¼ qnþt
Xs

i ¼ 1

BigðPiÞ,

i¼ 1,2, � � � ,s

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð5Þ

where Pi and Qi are the internal stages corresponding to the
variables p and q.

The s-stage PRK method is sympletic (Sanz-Serna, 1988) if the
coefficients satisfy

biAijþBiaji�biBj ¼ 0

bi ¼ Bi i,j¼ 1, � � � ,s:
ð6Þ

The coefficients of 1-order Radau IA-I A and 2-order Lobatto
IIIA-IIIB SPRK methods are shown to be

091
91

,
090
91

: ð7Þ

0

1

���� 0 0

1=2 1=2

91=2 1=2
,

0

1

����1=2 0

1=2 0

91=2 1=2
: ð8Þ

2.2. Governing equations

Within isotropic lossy material, the Maxwell equations can be
written as

@E

@t
¼

1

e
r �H�J,

@H

@t
¼�

1

mr � E, ð9Þ

where E and H are the electric and magnetic field vectors, the
current density J¼ sE, and e, m and s are dielectric permittivity,
permeability and conductivity, respectively.

Letting H¼r � A and E¼�U, the generalized Hamiltonian
function in lossy media become

HðA,UÞ ¼
Z

1

2m
9U92
þ

1

2e
9r � A92

�
1

e
JA

� �
dV : ð10Þ

Using Eq. (1), the Maxwell equations can be represented as
canonical equations of the Hamiltonian, such that

dA

dt
¼

dH

dU
¼

1

mU,

dU

dt
¼�

dH

dA
¼

1

e
r2A�

s
e

U: ð11Þ

Considering the two-dimensional TM case, Eq. (11) can be
expressed as

dAz

dt
¼

1

mUz,

dUz

dt
¼

1

er
2Az�

s
e Uz, ð12Þ

where Az and Uz denote the z-components of the vectors A and U,
respectively.
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