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ABSTRACT

When historical map data are compared with modern cartography, the old map coordinates must be
transformed to the current system. However, historical data often exhibit heterogeneous quality.
In calculating the transformation parameters between the historical and modern maps, it is often
necessary to discard highly uncertain data. An optimal balance between the objectives of minimising the
transformation error and eliminating as few points as possible can be achieved by generating a Pareto
front of solutions using evolutionary genetic algorithms. The aim of this paper is to assess the
performance of evolutionary algorithms in determining the accuracy of historical maps in regard to
modern cartography. When applied to the 1787 Tomas Lopez map, the use of evolutionary algorithms
reduces the linear error by 40% while eliminating only 2% of the data points. The main conclusion of this
paper is that evolutionary algorithms provide a promising alternative for the transformation of historical
map coordinates and determining the accuracy of historical maps in regard to modern cartography,
particularly when the positional quality of the data points used cannot be assured.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Historical maps are an important part of our cultural heritage
(Jenny and Hurni, 2011). These maps not only represent valuable
physical artefacts but also provide an important information
source for historians and geographers, who frequently incorporate
historical data into Geographical Information System (GIS) (Weir,
1997; Audisio et al., 2009). The scales, coordinate systems, projec-
tions, and surveying and mapping techniques used in historical
maps vary widely (Podobnikar, 2009). The different reference
systems employed in different historical maps often require
coordinate transformations between them (Tierra et al., 2008).
As historical maps typically exhibit higher degrees of inaccuracy
and uncertainty compared to contemporary cartographic data-
bases, it is not surprising that these two issues are of particular
concern in historical cartography studies and historical GIS appli-
cations (Plewe, 2003). Accuracy analysis of early maps is therefore
an important topic in historical cartography (Harley, 1968).

The positional accuracy of a point on a map is defined as the
difference between its recorded location on the map and its actual
location on the ground or location on a source of known higher
accuracy (Tucci and Giordano, 2011).
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The coordinate method calculates the correlation between two
sets of map coordinates of points identified by modern latitudes
and longitudes (Tobler, 1966). The deviation between each
computer-generated point (digitised from an early map) and the
corresponding point on the modern map can be displayed as a
vector indicating the direction and magnitude of the error
(Ravenhill and Gilg, 1974).

A related problem is the transformation of coordinates between
two different geodetic reference systems. A set of points with
known coordinates in both reference systems is used to obtain the
transformation parameters. The Helmert transformation is one
example of a commonly used method for geodesic transformations
between two reference frames (Vanicek and Krakiwsky, 1986;
Vanicek and Steeves, 1996). The quality of a transformation
between two sets of coordinates depends on the positional quality
of the points used to calculate the transformation parameters.

However, a problem arises when there is substantial spatial
uncertainty in the historical data points. In this case, certain points
with gross errors will not be used in the calculation of the accuracy
of the entire map. When the inaccuracy of a measurement is not
objectively known, as is frequently the case for historical maps,
the measured feature is defined as uncertain (Hunter and
Goodchild, 1993). Although uncertainty and inaccuracy are onto-
logically distinct concepts, it is often difficult to measure the two
separately in practice, particularly in the context of historical maps
(Hu, 2010).
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In previous papers (Manzano-Agugliaro et al., 2012), the
coordinates obtained from the historical map were displaced by
the average latitude and longitude error to correct the absolute
displacement error in the historical map, i.e., to correct the
georeferencing error. Any points whose displacements from the
corresponding points in the modern map exceeded a specified
distance were then eliminated from the analysis. These points
were considered to contain gross errors, either because of incor-
rect identification with the current points or due to a gross error in
the historical map. The final estimate of the map accuracy is
obtained based on the root mean square (RMS) displacement after
the removal of the points with gross errors.

In this historical cartography, we cannot be certain that any
given point is more accurate than another. To displace the
coordinates on a historical map to positions such that the final
(RMS) errors are minimal, many combinations must be performed,
each time discarding the points that exceed a fixed maximum RMS
for a gross or unacceptable error and then calculating the new
errors. A historical map may exhibit rotation (due to projection
effects) as well as horizontal and vertical scale errors in addition to
latitudinal and longitudinal displacement, making the number of
possible combinations that must be considered even higher. If we
also aim to discard as few points as possible from the historical
map, then the problem becomes multi-objective.

The multi-objective nature of these mapping problems makes
the decision-making process complex. Fortunately, the increase in
computational resources in recent years has allowed researchers
to develop efficient computational algorithms for handling com-
plex optimisation problems. In particular, multi-objective evolu-
tionary algorithms (MOEAs) are known for their ability to optimise
several objective functions simultaneously to provide a represen-
tative Pareto front, which is a set of problem solutions represent-
ing a trade-off between the objectives (Marquez et al., 2011). The
aim of this paper is to assess the performance of evolutionary
algorithms in determining the accuracy of historical maps in
regard to modern cartography.

2. Concepts in multi-objective optimisation

Many of the problems faced in engineering and other disci-
plines are optimisation problems. Many optimisation problems are
difficult to solve because of features such as non-linear formula-
tions, constraints, and NP-hard complexity.

The techniques for solving optimisation problems generally fall
into two categories. Exact techniques provide the optimal solution
to a given problem but are impractical for handling NP-hard
problems because of prohibitive computation time and/or
memory requirements. Non-exact techniques, such as metaheur-
istic methods (Glover and Kochenberger, 2003), provide satisfac-
tory (though not necessarily optimal) solutions to complex
problems in a reasonable amount of time.

Most computational optimisation research has been focused on
solving single-objective problems, including constraints in some
cases. Nevertheless, many real-world problems require the simul-
taneous optimisation of several competing objectives. Several
authors have proposed multi-objective algorithms based on Pareto
optimisation (Bafios et al., 2009, 2011) to solve these multi-
objective optimisation problems (MOPs).

In contrast to single-objective optimisation problems, the
solution to a MOP consists of a set of non-dominated solutions
known as the Pareto optimal set rather than a single solution. A
solution that belongs to this set is said to be a Pareto optimum and
when the solutions of this set are plotted in objective space, they
are collectively known as the Pareto front. Obtaining the Pareto
front is the main goal in multi-objective optimisation.

Evolutionary algorithms are particularly desirable in the solution
of multi-objective optimisation problems because they simulta-
neously handle a set of possible solutions, yielding an entire set
of Pareto optimal solutions in a single run of the algorithm (Coello,
1999).

While a single-objective optimisation problem may have only
one optimal solution, a multi-objective optimisation problem may
have an uncountable set of solutions. When evaluated, these
solutions produce vectors whose components represent a trade-
off between the various objectives of the problem. At this point, an
expert in the problem, referred to as the “decision maker” (DM),
must implicitly choose one (or several) solutions by selecting one
or more of these vectors.

For the sake of generality, we can assume that although in the
following definitions (Talbi, 2009) we use the term minimisation
for all of the objectives, there are problems in which several (or all)
of the objectives must be maximised to generate the optimum
solutions.

A multi-objective optimisation problem can be informally
defined (Osyczka, 1985) as the problem of finding: “a vector of
decision variables that satisfies the constraints and optimises a
vector function whose elements represent the objective functions.
These functions form a mathematical description of the perfor-
mance criteria, which are usually in conflict with each other.
Hence, the term ‘optimise’ means finding a solution that would
give the values of all of the objective functions that are acceptable
to the decision maker.”

Definition 1. Multi-objective optimisation problem.
A MOP is defined as

MOP2min F(x) = (f1(X),f5(X), ..., f (X)), X€S

where M=2, is the number of objectives, x = (x1, ..., X) is the vector
representing the decision variables and S represents the set of
feasible solutions associated with equality and inequality con-
straints and explicit bounds. F(x)=(f(x),f2(X),....fy(x)) is the
vector of objectives to be optimised.

Since in real-world MOPs the criteria are usually in conflict,
there is a need to establish other concepts to consider optimality.
In that sense, a partial order relation, known as Pareto-dominance
relation can be defined.

Definition 2. Pareto dominance. An objective function vector is
defined as a dominating vector (denoted by F(x)<F'(x)) if and only
if no component of it is smaller than the corresponding compo-
nent of and at least one component of it is strictly smaller, that is,

vie(l, ..., M} : fix) <f; oadie(1, ... M} : f;x) <f; )

Definition 3. Pareto Optimality. A solution x*eS is Pareto optimal
if for every, does not dominate, that is F(x)<F(x*).

The concept of Pareto optimality is directly related to the
dominance concept and was initially proposed by Edgeworth
(1881) and extended by Pareto (1896).

Definition 4. Pareto optimal set. For a given MOP, the Pareto
optimal set is defined as g* = {x*}.

Definition 5. Pareto front. For a given MOP and its Pareto optimal
set go*, the Pareto front is defined as gS* = {S(x*) }p* = {x*}.
Thus the Pareto front is the image of the Pareto optimal set in
the objective space, and as such it constitutes the main goal of
multi-objective optimisation. As a consequence, all the solutions
belonging to the Pareto front are indifferent because any change in
any objective x; that would improve it degrades any amount of
other objectives. The concept of indifference is illustrated in Fig. 1.
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