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a b s t r a c t

The Matérn covariance scheme is of great importance in many geostatistical

applications where the smoothness or differentiability of the random field that models

a natural phenomenon is of interest. In addition to the range and nugget parameters, the

flexibility of the Matérn model is provided by the so-called smoothness parameter

which controls the degree of smoothness of the random field. It has been the usual

practice in geostatistics to fit theoretical semivariograms like the spherical or

exponential, thus implicitly assuming the smoothness parameter to be known, without

questioning if there is any theoretical or empirical basis to justify such assumption.

On the other hand, if only a small number of sparse experimental data are available, it is

more critical to ask if the smoothness parameter can be identified with statistical

reliability. Maximum likelihood estimation of spatial covariance parameters of the

Matérn model has been used to address the previous questions. We have developed a

general algorithm for estimating the parameters of a Matérn covariance (or

semivariogram) scheme, where the model may be isotropic or anisotropic, the nugget

variance can be included in the model if desired, and the uncertainty of the estimates is

provided in terms of variance–covariance matrix (or standard error-coefficient of

correlation matrix) as well as likelihood profiles for each parameter in the covariance

model. It is assumed that the empirical data are a realization of a Gaussian process. Our

program allows the presence of a polynomial trend of order zero (constant global mean),

one (linear trend) or two (quadratic trend). The restricted maximum likelihood method

has also been implemented in the program as an alternative to the standard maximum

likelihood. Simulation results are given in order to investigate the sampling distribution

of the parameters for small samples. Furthermore, a case study is provided to show a

real practical example where the smoothness parameter needs to be estimated.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In geostatistics, spatial covariance and semivariogram
models play a key role. The covariance model may be

known from theoretical considerations, but more often
must be inferred from the experimental data. Often, in
practice one uses a covariance model whose behavior close
to the origin is fixed in advance rather than being estimated
from the experimental data. For example, when fitting a
spherical or exponential model, one assumes that the
random field, used to model the spatial variable of interest
is not differentiable, or on the other hand, if a Gaussian
semivariogram model is used, one is assuming that the
random field can be differentiated any number of times.
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However, there are practical problems where the smooth-
ness of the random field is of great interest. For example,
when the geovariables are sampled intensively as for a
computer-scanned image in petrology or in a high-
resolution image in remote sensing. Additionally, a
differentiable model is necessary for kriging estimation
of directional derivatives and hence the gradient of a
random field (Pardo-Igúzquiza and Chica-Olmo, 2007).

A flexible covariance model for modelling the smooth-
ness, then differentiability, of a random field is the Matérn
model (Whittle, 1953; Matérn, 1960), which can be
defined as:
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where s240 is the total variance (sill); d2
X0 is the nugget

variance; a40 is the range (also known as the scale
parameter); n40 is the smoothness parameter (also
known as the shape parameter); G( � ) is the gamma
function; Kn( � ) is the modified Bessel function of the
second kind and order n; s2

�d2 is the total variance minus
nugget (partial sill); h ¼ (x, y) is the distance vector with
two components in the plane.

Note that the semivariogram is given by

gðhÞ ¼ s2 � CðhÞ.

For n ¼ 0.5, the Matérn model is identical to the
exponential model and the limit case as n tends to infinite
is the Gaussian model. The case n ¼ 1 has also been used
in practice (Rodriguez-Iturbe and Mejia, 1974). If the
smoothness parameter is larger than one, n41, then the
random field is [n] times mean square differentiable,
where [n] is the integer part of n.

The isotropic model given in Eq. (1) can be extended to
the anisotropic case by using the usual geometric
anisotropy transformation i.e. by introducing an aniso-
tropy ellipse with three parameters: the two ellipse semi-
axis and the anisotropy angle. In the program, these three
parameters are named rangeX, rangeY and anisotropy
angle parameter. The angle parameter is the angle
between rangeX and the X-axis, measured counterclock-
wise from the X-axis. Thus, the maximum number of
parameters for the Matérn covariance model considered
in this paper is six: total variance, nugget variance,
smoothness parameter, rangeX, rangeY and anisotropy
angle.

It is a common practice in geostatistics to have a
parameter for defining the distance beyond which two
locations are no longer correlated. This parameter is the
range for a spherical model or the practical range for
models where the correlation tends to zero as |h|-0. An
example of the latter case is the ‘‘practical range’’ of an
exponential covariance model, which is usually taken to
be three times its range parameter.

For the Matérn covariance model, the ‘‘practical range’’
defined as the distance for which the value of the
correlation between two locations is equal to 0.05 is a
function of both the range parameter a and the smooth-
ness parameter n. This dependency leads to high negative

correlation for estimates of a and n, so that if one of those
two parameters is on average underestimated, the other
will be on average overestimated.

The basic model adopted in this paper for the random
field is to assume that it has two components: a
deterministic component known as the trend and which
accounts for the long correlations (i.e. low frequency
variation) and a zero-mean second-order stationary
stochastic component or residual, which models the short
correlations (i.e. high frequency variation). Given a multi-
variate normal sample vector Z, the log-likelihood with
parameters (b, h) may be written as (Mardia, 1980; Mardia
and Marshall, 1984; Mardia, 1990)
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where n is the number of experimental data; h ¼ (s2, h*)
is the covariance parameters, so that h* is the vector of
covariance function parameters apart from the variance,
i.e. h* is the vector of correlation parameters; R(h*) is the
the n�n correlation matrix (it will be also denoted by R if
there is no ambiguity); superscript T denotes matrix
transpose; R(h*)�1 is the inverse of the correlation matrix;
|R(h*)| is the determinant of the n�n correlation matrix;
Z is the n�1 vector of experimental data; F is the n� p

matrix of known basis function for the trend. In our
implementation, we have used the two-dimensional
monomials {1, x, y, x2, y2, xy} from the spatial location
of Z. The first monomial represents a trend of order zero,
the next three represents a linear trend and the last six
represent quadratic trend; b is the p�1 vector of
unknown trend coefficients.

For any given set of correlation parameters h*, it can be
shown from Eq. (2) that the maximum likelihood
estimates of trend coefficients b and variance s2 are given
by (see for example Mardia and Marshall, 1984)

b̂ ¼ ðFTR�1FÞ�1FTR�1Z (3)
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By substituting Eqs. (3) and (4) into Eq. (2), the ML
estimates of the correlation parameters h* can be obtained
by numerical maximization of the following expression:
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n

2
lnð2pÞ � n

2
þ

n

2
lnðnÞ

�
1

2
ln jRj �

n

2
lnððZ� Fb̂ÞTR�1

ðZ� Fb̂ÞÞ. (5)

Alternatively, we may want to use the restricted
maximum likelihood (REML) estimates instead of ML
estimates which filters out the effect of the polynomial
trend. In REML, the expression to be maximized is given by
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