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a b s t r a c t

Porosity and permeability are key petrophysical parameters obtained from laboratory core analysis.

Cores, obtained from drilled wells, are often few in number for most oil and gas fields. Porosity and

permeability correlations based on conventional techniques such as linear regression or neural

networks trained with core and geophysical logs suffer poor generalization to wells with only

geophysical logs. The generalization problem of correlation models often becomes pronounced when

the training sample size is small. This is attributed to the underlying assumption that conventional

techniques employing the empirical risk minimization (ERM) inductive principle converge asympto-

tically to the true risk values as the number of samples increases. In small sample size estimation

problems, the available training samples must span the complexity of the parameter space so that the

model is able both to match the available training samples reasonably well and to generalize to new

data. This is achieved using the structural risk minimization (SRM) inductive principle by matching the

capability of the model to the available training data. One method that uses SRM is support vector

regression (SVR) network. In this research, the capability of SVR to predict porosity and permeability in

a heterogeneous sandstone reservoir under the effect of small sample size is evaluated. Particularly, the

impact of Vapnik’s e-insensitivity loss function and least-modulus loss function on generalization

performance was empirically investigated. The results are compared to the multilayer perception (MLP)

neural network, a widely used regression method, which operates under the ERM principle. The mean

square error and correlation coefficients were used to measure the quality of predictions. The results

demonstrate that SVR yields consistently better predictions of the porosity and permeability with small

sample size than the MLP method. Also, the performance of SVR depends on both kernel function type

and loss functions used.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most important tasks in modeling geoscience data
is development of robust and accurate correlation models cali-
brated to small sample size problems. For permeability estima-
tion, correlation models between porosity and permeability are
often built based on the relationship between geophysical logs
and core-measured porosity and permeability. In typical practice,
core plugs are extracted from a few key wells during drilling
whereas geophysical logs are run for all wells in the oil/gas field.
The limited number of core plug data poses a challenging problem
to existing empirical techniques that employ the empirical risk
minimization (ERM) principle such as linear regression and neural
networks. Statistical learning theory (SLT) shows that these
techniques can be safely used as a measure of the true risk when
the sample size is sufficiently large. SLT calls for introducing a

structure to match the complexity of the predictive learning
technique to the available training data. The structure is com-
posed of elements of increasing complexity that need to be
chosen to imitate the response of the learning problem using a
limited number of data (Cherkassky and Mulier, 2007).

Artificial neural networks (ANNs) is a universal approximator that
is capable of approximating any nonlinear function to any degree of
accuracy provided that there are a sufficient number of neurons in
the network (Hornik et al., 1989). The structure implemented by
ANN may be captured by the number and size of the hidden layers,
which are controlled explicitly by the user. This structure may also
lead to an overfitting problem during learning, particularly in the
presence of a small sample size, which potentially yields a poor
generalization model. Although ANN has shown some successful
applications to porosity and permeability (Helle and Ursin, 2001;
Huang et al., 2001), the underlying learning algorithm has been
developed for learning problems of large sample sizes. Hence, for a
given small sample size, extensive experiments with several different
learning techniques are required to devise an accurate ANN-based
regression model (Kaviani et al., 2008).
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Recently, support vector machines (SVMs) have been gaining
popularity in regression and classification due to their excellent
generalization performance. The SVM approach has been success-
fully applied to several different applications such as face recogni-
tion, object detection, handwriting recognition, text detection,
speech recognition and prediction, lithology identification, and
porosity and permeability determination from log data (Li et al.,
2000; Lu et al., 2001; Choisy and Belaid, 2001; Gao et al., 2001; Kim
et al., 2001; Ma et al., 2001; Van Gestel et al., 2001; Al-Anazi and
Gates, 2010a, 2010b, 2010c, 2010d). The SVM formulation is based
on the structural risk minimization (SRM) inductive principle
where the empirical risk minimization (ERM) inductive principle
and the Vapnik and Chervonenkis (VC) confidence interval are
simultaneously minimized (Vapnik and Chervonenkis, 1974;
Vapnik, 1982, 1995). The SRM principle introduces a structure
where each element of the structure is indexed by a measure of
complexity defined by the margin size between two classes in a
classification learning problem and by an insensitivity zone size in
a regression problem (Cherkassky and Mulier, 2007). The SVM
optimization formulation implicitly matches a suitable structure of
certain complexity to the available small size sample. This type of
structure is controlled independently of the dimension of the
problem, which is an advantage over classical learning techniques.
In regression applications, the empirical error (the training error) is
minimized by Vapnik’s e-insensitivity loss function rather than the
quadratic error and absolute-value loss functions used in neural
networks and classical regression methods. To generalize to non-
linear regression, kernel functions are used to project the input
space into a feature space where a linear or nearly linear regression
hypersurface results. A regularization term is used to determine a
trade-off between the training error and the VC confidence term.
The learning problem is formulated as a constrained convex
optimization problem whose solution is used to construct the
mapping function between the empirical input and the output data
(Kecman, 2005).

Previously, our research demonstrated the generalization cap-
ability of SVM in lithology classification and porosity and perme-
ability predictions with sensitivity analysis of kernel function
types and SVM regularization parameters. In this research, how-
ever, the sensitivity of the SVM-based prediction of porosity and
permeability to sample size and empirical loss functions are

examined and compared to a multilayer perceptron network.
The empirical evaluation of the generalization performance under
small sample setting is conducted for two loss functions: first,
the e-insensitivity loss function, and second, the least-modulus
(or absolute value) loss function.

2. Background

2.1. Multilayer perceptron neural network model

ANN has been frequently used as an intelligent regression
technique in petrophysical properties estimation (Rogers et al.,
1995; Huang et al., 1996, 2001; Fung et al., 1997; Helle and Ursin,
2001; Helle and Bhatt, 2002). Backpropagation multilayer percep-
tron neural networks are considered to be universal approxima-
tors: it has been mathematically proven that a network with a
hidden layer of an arbitrary large number of nonlinear neurons
can approximate any continuous nonlinear function over a
compact subset to any desirable accuracy (Hornik et al., 1989).
In our study, a backpropagation conjugate gradient learning
algorithm is used to train the multilayer perception (MLP) net-
work by minimizing a squared residual cost function. During
training, input patterns are propagated forward through hidden
layers toward the output while the output error signal is back-
propagated toward the input layer to adjust the weights of the
hidden and output layers in order to approximate the target
hypersurface. One well-known problem with such a training
algorithm is that it can get trapped in local minima because
the algorithm performance is sensitive to the selection of the
starting weight values (Hastie et al., 2001). To overcome this
issue, the initial range of initial weight values is chosen by the
Nguyen–Widrow algorithm (Nguyen and Widrow, 1990). The
conjugate gradient algorithm is used to optimize values of
the weights. Optimization is done several times with different
starting values of the weight values (chosen randomly) to
improve the chances of converging to the global solution. The
MLP network can also overfit the training data leading to poor
generalization to new data. In this study, a cross-validation
technique was used to terminate training to select the best model
(Sherrod, 2009).

Nomenclature

b bias constant
MLP multilayer perceptron neural networks
c regularization parameter
DT sonic porosity log
f an unknown function
GR gamma ray
h Vapnik-Chervonenkis dimension
ILD deep inductive laterolog
K kernel function/permeability
L Lagrangian equation for a dual programming problem

or loss function
NPHI neutron porosity log
RBF radial basis function
RHOB bulk density log
Remp empirical risk
R structural risk
SVR support vector regression
SVM support vector machines

x input variable
y output variable
ŷ estimated output value

Greek symbols

a,a* Lagrangian multiplier to be determined
e error accuracy
Z,Z* Lagrangian multipliers
k, W sigmoid function parameters
x,x* slack variables
w weight vector

Subscripts and superscripts

k,l indices
N number of samples
n input space dimension
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