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a b s t r a c t

Full-range tail dependence copulas have recently been proved very useful for modeling various de-
pendence patterns in the joint distributional tails. However, there are only a few applicable candidate
models that have the full-range tail dependence property. In this paper, we present a general approach to
constructing bivariate copulas that have full-range tail dependence in both upper and lower tails and are
able to account for both reflection symmetry and reflection asymmetry. The general approach is based
on mixtures of positive regularly varying random variables, and the full-range tail dependence property
is established for such a general model. In order to construct copulas that possess the above dependence
properties and are fast to compute, we construct a full-range tail dependence copula based on mixtures
of Pareto random variables. We derive dependence properties of the proposed copula, and the extreme
value copula based on it. A comparisonwith the full-range tail dependence copula proposed in Hua (2017)
has been conducted, and the computational speed has been largely improved by the copula proposed in
the current paper.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Modern financial and insurance risk management practices of-
ten require ones to take multiple dependent risks into account.
To better account for the stochastic nature behind dependent
risks, one needs to model dependence beyond the multivariate
Gaussian framework. This has led to tons of research works deal-
ing with non-Gaussian dependence modeling. However, modeling
dependence is not an easy task. Although there is only one way
to define bivariate independence, dependence can be formulated
in an unlimited number of ways. The notion of copula was first
proposed in Sklar (1959), and it has evolved as a widely accepted
tool in modern statistical dependence analysis. Among many of
the advantages, the capability in modeling a rich variety of tail
behavior, such as tail dependence versus tail independence, and
reflection symmetry versus reflection asymmetry, is perhaps one
of the most desirable capacities that set the copula approach apart
from many other multivariate analysis frameworks (Brechmann
and Schepsmeier, 2013). The notion of copula is a mathematical
object that is convenient for illustrating the dependence structures
globally and locally. An n-variate function C : [0, 1]n → [0, 1],
with n ∈ {2, 3, . . .}, is a copula if it is grounded, n-increasing, and
has uniform margins (see, Nelsen, 2006).
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Along with the increasing complexity of (re)insurance products
as well as high competition amongst (re)insurers, more flexible
copula models possessing sufficient mathematical tractability and
being able to capture a wide range of (tail) dependence patterns
are in high demand within the community of risk analysts. To
this end, vine copulas and factor copulas have been frequently
adopted by academic actuaries to construct multivariate models
containing more realistic dependence structures. For both of these
two approaches, bivariate copulas act as the building blocks. More
specifically, the vine copula approach uses a cascade of bivariate
copulas to build up intricate multivariate structures via graphical
models, and the factor copula approach achieves different depen-
dence structures by mixing bivariate copulas with common latent
factors.We refer the reader to Kurowica and Joe (2011) for a recent
review of the former approach, and Krupskii and Joe (2013) for
the later one. To implement these commonly-used multivariate
copula models, one often needs to select candidate bivariate cop-
ulas from many existing parametric copula families, and varying
bivariate copulasmay be selected for different pairs. A very flexible
bivariate copula can itself become a welcome candidate in the
pool of bivariate copulas. Moreover, a parsimonious multivariate
copula can be constructed simply based on one single bivariate
copula family as long as it is sufficiently flexible. With such a
parsimonious dependencemodel, on the one hand there is no need
to select the bivariate copulas among many different candidate
copulas, while on the other hand the comparison of dependence
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properties among different pairs becomes more straightforward
andmeaningful, as all pairs are modeled based on the same copula
family. In our opinion, the following two desirable criteria at least
need to be satisfied in order to obtain a very flexible copula family:

(A1) covering full-range tail dependence in both upper and lower
tails (see, Section 2 for more discussions about the notion of
full-range tail dependence);

(A2) accounting for both reflection symmetry and reflection
asymmetry, meaning that, C(u1, u2) and u1+u2−1+C(1−
u2, 1− u1) may or may not equal for any u1, u2 ∈ [0, 1].

The first criterion removes the obstacle that most existing copulas
are only able to model either asymptotic dependence or asymp-
totic independence. We note that a copula with full-range tail
dependence in the upper tail can improve the assessment for
dependent high-risk scenarios (see, Hua andXia, 2014). The second
criterion is not about the property of full-range tail dependence,
but (A2) is very important for real-world applications as it greatly
improves the model’s flexibility in accounting for both upper and
lower tails. Bivariate copulas with the aforementioned proper-
ties are useful not only in constructing multivariate dependence
models mentioned above, but also in directly accounting for a
bivariate dependence structure; bear in mind that there are still
many real applications that only involve bivariate dependence and
such flexible full-range tail dependence copulas can be helpful in
improving the performance for such cases. Practically, the debate
that the Gaussian copula lacks sufficient tail dependence to price
credit default derivatives (Salmon, 2012) motivates the need of
full-range tail dependence copulas. Regarding (A2), financial and
insurance data often appears to be asymmetric between upper
and lower tails (see, e.g., Okimoto, 2008). Therefore, one needs to
choose models that are capable of modeling upper and lower tails
in comparable ways.

All in all, copula functions satisfying (A1) and (A2) are highly
relevant in actuarial and risk management applications (see, e.g.,
Hua and Joe, 2011a; Hua and Xia, 2014). But copulas carrying such
properties are not common in the literature, especially when we
require that such copulas can be implemented for real applications.
In this paper, we aim at constructing new bivariate copula families
that satisfy the criteria (A1) and (A2).More importantly,we require
that the resulting copulas should not only satisfy the above con-
ditions theoretically, but also be computable at a reasonably fast
speed so that data analytic tools can be further developed based on
such copulas; it turns out that the latter is often more challenging
to achieve.

Recently, Hua (2017) proposed a bivariate copula that satisfies
(A1) and (A2) at the same time, and moreover the copula is com-
putable and feasible for real applications. The copula developed in
Hua (2017) is constructed by using themixtures of two gamma and
two exponential random variables (rv’s), and it is thus referred to
as the GGEE copula in what follows. The GGEE copula was shown
to satisfy (A1) and (A2), and be superior in modeling dependent
financial and insurance data than some other commonly-used
copulas (Hua, 2017). For the GGEE copula, an unideal aspect that
surely can be outweighed by its remarkable performance is the
computational speed, which is acceptable but may not be fast
enough for complex applications of modeling high-dimensional
dependence structures. Specifically, the hypergeometric function
and the Appell’s F1 function involved in the representation of the
GGEE copula slow down the computational speed.

The key mechanism hid under the GGEE copula to induce full-
range tail dependence is that, two bivariate random vectors with
regularly varying tails are mixed. One of the random vectors is
comonotonic (Dhaene et al., 2002), and the other is independent.
The interplay between the comonotonic and the independent ran-
dom pairs manipulates the extremal co-movements of the under-
lying copula, depending onwhich one dominates the tails. Inspired

by the aforementioned observations, our objective in this paper is
to establish a general approach to constructing a tractable class
of bivariate copulas that possess full-range tail dependence. As a
byproduct, we shall identify a subclass of such copulas, and this
subclass should also possess the feature of reflection symmetry and
asymmetry; this is again motivated by the model in Hua (2017).

Moreover, the general approach proposed in this paper leads
to a new copula model induced by a Pareto mixture model. To
facilitate further discussions and make our notation consistent
with the one used in Hua (2017), we will refer the copula to be
proposed in this paper as the PPPP copula, since it is induced by a
randomvectorwhose eachmargin is amixture of four independent
Pareto rv’s. The PPPP copula is surprisingly tractable, and many of
its distributional properties have closed-form expressions. These
attractive properties further attribute to the fast computational
speed of the PPPP copula, and make the copula potentially useful
for more complex applications.

We openly admit that, in the same vein as the Gaussian copula
and the Student-t copula which are used broadly in banking and
insurance, the copulas implied by the proposed structure may not
have simple expressions that only involve basic operations. This is
however a result of the fact that the proposedmodel is constructed
by using mixtures of regularly varying rv’s, and it is generally
difficult to obtain explicit formulas for the univariate marginal in-
verse cumulative distribution functions (cdf’s) and thus the corre-
sponding copulas. To derive the mathematical properties of these
copulas, instead of directly working on the copula functions of in-
terest, we usually need to start with the stochastic representation
behind them. In order to apply themaximum likelihoodmethod to
calibrate these copulas, one needs to seek appropriate distribution
candidates so that the copula models can be fast computed. This is
of enormous importance for real-world applications and thus one
of the core objectives in this current paper. For the PPPP copula, our
implementation has shown that the marginal inverse cdf’s can be
easily solved by employing commonly used numerical methods.
It is noteworthy that the PPPP copula provides a flexible tool
for modeling dependence structures between various univariate
margins, while the underlying scale mixture model gives rise to a
meaningful interpretation of the copula. Therefore, with the goal of
constructing superior dependence analysis tool in mind, we focus
on the copula itself andderive a number of copula-basedproperties
such as the parameters for quantifying tail dependence, Kendall’s
τ , Spearman’s ρ, and the corresponding extreme value copulas.

Finally, let us document herein some other potential methods
of constructing full-range tail dependence copulas. Besides the
mixture model that we are going to propose in this current paper,
full-range tail dependence copulas might be constructed by using
asymmetrizations (Liebscher, 2008), multiple factor models (Su
and Furman, 2017), patchworkmodels (Durante et al., 2013), some
generalized Archimedean copulas (Hofert andVrins, 2013), etc.We
emphasize again that, compared to the aforementioned methods,
the proposed approach helps us develop a computable class of
parametric models so that a wide range of tail dependence in both
lower and upper tails and tail asymmetry/symmetry can both be
properly covered.

The paper is then organized as follows. After setting up some of
the basic notation in Section 2, we present the general approach
to constructing full-range tail dependence copulas in Section 3.
In Section 4, we propose and study the PPPP copula in details.
Specifically, various distributional properties are proved for the
PPPP copula, and the corresponding copula domain of attraction is
investigated. A numerical study of actuarial interest is conducted
to demonstrate the practical usefulness of the PPPP copula. Sec-
tion 5 concludes the paper with further discussions. A few extra
comments and results are contained in Appendix A, and tedious
proofs are relegated to Appendix B in order to facilitate the reading.
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